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Abstract

Maude is a high�level language and a high�performance system supporting exe�
cutable speci�cation and declarative programming in rewriting logic� Since rewrit�
ing logic contains equational logic� Maude also supports equational speci�cation
and programming in its sublanguage of functional modules and theories� The un�
derlying equational logic chosen for Maude is membership equational logic� that
has sorts� subsorts� operator overloading� and partiality de�nable by membership
and equality conditions� Rewriting logic is re�ective� in the sense of being able to
express its own metalevel at the object level� Re�ection is systematically exploited
in Maude endowing the language with powerful metaprogramming capabilities� in�
cluding both user�de�nable module operations and declarative strategies to guide
the deduction process� This paper explains and illustrates with examples the main
concepts of Maude�s language design� including its underlying logic� functional� sys�
tem and object�oriented modules� as well as parameterized modules� theories� and
views� We also explain how Maude supports re�ection� metaprogramming and in�
ternal strategies� The paper outlines the principles underlying the Maude system
implementation� including its semicompilation techniques� We conclude with some
remarks about applications� work on a formal environment for Maude� and a mobile
language extension of Maude�
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� Introduction

Maude ������� is a high�level language and high�performance system support�
ing both equational and rewriting logic computation for a wide range of ap�
plications� Maude has been in�uenced in important ways by OBJ	 �	
�� in
particular� Maude�s equational logic sublanguage essentially contains OBJ	
as a sublanguage� The main di
erences from OBJ	 at the equational level are
a much greater performance� and a richer equational logic� namely� member�
ship equational logic ����� that extends OBJ	�s order�sorted equational logic
�	���

The key novelty of Maude is that�besides e�ciently supporting equational
computation and algebraic speci�cation in the OBJ style�it also supports
rewriting logic computation� Rewriting logic ��	� is a logic of concurrent change
that can naturally deal with state and with highly nondeterministic concur�
rent computations� It has good properties as a �exible and general seman�
tic framework for giving semantics to a wide range of languages and models
of concurrency ��
�	������	�� In particular� it supports very well concurrent
object�oriented computation� This is re�ected in Maude�s design by providing
special syntax for object�oriented modules� Since the computational and logi�
cal interpretations of rewriting logic are like two sides of the same coin� the
same reasons making it a good semantic framework at the computational level
make it also a good logical framework at the logical level� that is� a metalogic

in which many other logics can be naturally represented and implemented �����
Consequently� some of the most interesting applications of Maude aremetalan�
guage applications� in which Maude is used to create executable environments
for di
erent logics� theorem provers� languages� and models of computation�

Maude�s functional modules are theories in membership equational logic �������
a Horn logic whose atomic sentences are equalities t � t� and membership as�

sertions of the form t � s� stating that a term t has sort s� Such a logic extends
order�sorted equational logic �	��� and supports sorts� subsort relations� sub�
sort polymorphic overloading of operators� and de�nition of partial functions
with equationally de�ned domains� Maude�s functional modules are assumed
to be Church�Rosser and terminating� they are executed by the Maude engine
according to the rewriting techniques and operational semantics developed in
����

Membership equational logic is a sublogic of rewriting logic ��	�� A rewrite
theory is a pair �T�R� with T a membership equational theory� and R a
collection of labelled and possibly conditional rewrite rules involving terms in
the signature of T � Maude�s system modules are rewrite theories in exactly this
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sense� The rewrite rules r � t �� t� in R are not equations� Computationally�
they are interpreted as local transition rules in a possibly concurrent system�
Logically� they are interpreted as inference rules in a logical system�

Rewriting in �T�R� happens modulo the equational axioms in T � Maude sup�
ports rewriting modulo all combinations of associativity� commutativity� and
identity� The rules in R need not be Church�Rosser and need not be terminat�
ing� Many di
erent rewriting paths are then possible� therefore� the choice of
appropriate strategies is crucial for executing rewrite theories� In Maude� such
strategies are not an extralogical part of the language� They are instead in�

ternal strategies de�ned by rewrite theories at the metalevel� This is because
rewriting logic is re�ective ������� in the precise sense of having a �nitely

presented universal theory U that can simulate any �nitely presented rewrite
theory� Since U is representable in itself� we can then achieve a �re�ective
tower� with an arbitrary number of levels of re�ection�

Maude e�ciently supports this re�ective tower through its META�LEVEL mod�
ule� which makes possible not only the declarative de�nition and execution
of user�de�nable rewriting strategies� but also many other metaprogramming
applications� In particular� it is possible to de�ne and execute within the logic
an extensible module algebra supporting the OBJ style of parameterized pro�

gramming �	
�� with highly generic and reusable modules� The basic idea is
that META�LEVEL is extended with new data types for� parameterized modules�
theories� with loose semantics� to state formal requirements in parameters�
views� to bind parameter theories to their instances� and module expressions�
instantiating� transforming� and composing parameterized modules� All such
new types and operations are de�ned in Maude itself� This� together with the
explicit access to modules as terms provided by re�ection� makes the corre�
sponding module algebra completely open� and easily extensible by new mod�
ule operations and transformations ����� Maude also supports object�oriented
modules� with convenient syntax for object�oriented applications�

All applications typical of equational programming and algebraic speci�ca�
tion are conveniently and e�ciently supported through Maude�s sublanguage
of functional modules� In fact� the paper ���� argues that Maude�s equational
logic� namely� membership equational logic� is so expressive�yet e�ciently
implementable�as to o
er very good advantages as a logical framework for
a very wide range of algebraic speci�cation languages based on both total
and partial equational logic formalisms� However� many Maude applications
go beyond equational logic� System modules support general rewriting logic
applications� The important area of concurrent and distributed object�based
system speci�cation and prototyping is supported by object�oriented modules�
In addition� re�ection makes possible many novel metaprogramming and met�
alanguage applications� and is extremely valuable in the use of rewriting logic
as a logical and semantic framework �����

	



The rewriting logic research program has shown good signs of vitality� includ�
ing three international workshops ����	��	��� over two hundred research papers
�see the references in ��
������������ and three language implementation e
orts�
namely ELAN ������
� in France� CafeOBJ ��	������� in Japan� and Maude�
Therefore� Maude should be seen as our contribution to the broader collective
e
ort of building good language implementations for rewriting logic� In this
regard� a key distinguishing feature of Maude is its systematic and e�cient
use of re�ection� exploiting the fact that rewriting logic is re�ective� a feature
that makes Maude remarkably extensible and powerful� and that allows many
advanced metaprogramming and metalanguage applications�

This paper constitutes a revised and extended presentation of concepts and
ideas previously introduced in several conference papers �����	�	�����	��� Those
papers have provided snapshots of the language versions at di
erent moments�
while this journal version focuses on the main concepts in a �mostly� version�
independent way� However� we do not develop here complete presentations
of the underlying logics� providing instead bibliographic references where the
reader can �nd more details�

The reader is assumed to have some knowledge of algebraic speci�cation con�
cepts �as surveyed for example in the recent book ����� For a more introductory
presentation of Maude� the reader is advised to read the Maude tutorial �����
where the main features of the language are introduced in an incremental
way by means of a sequence of detailed examples� More language details can
also be found in the Maude manual ����� which has large amounts of version�
dependent information� We plan to keep the manual as an evolving online
document re�ecting new versions of the language as they are developed�

The Maude system� the just mentioned tutorial and manual� a collection of
examples and case studies� and a list of related papers are available �free of
charge� at http���maude�csl�sri�com�

� Membership Equational Logic and Functional Modules

Maude is a declarative language based on rewriting logic� but rewriting logic
has its underlying equational logic as a parameter� There are� for example�
unsorted� many�sorted� and order�sorted versions of rewriting logic� each con�
taining the previous version as a special case� In particular� the underlying
equational logic chosen for Maude is membership equational logic� a conser�
vative extension of both order�sorted equational logic and partial equational
logic with existence equations ������� It supports partiality� subsort relations�
operator overloading� and error speci�cation�
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��� Membership Equational Logic

A signature in membership equational logic is a triple � � �K��� S� with
K a set of kinds� �K��� a many�sorted �although it is better to say �many�
kinded�� signature� and S � fSkgk�K a K�kinded set of sorts� An ��algebra is
then a �K����algebra A together with the assignment to each sort s � Sk of a
subset As � Ak� Intuitively� the elements in sorts are the good� or correct� or
non�error� or de�ned� elements� whereas the elements without a sort are error
or unde�ned elements� In general� a total function at the kind level restricts
only to a partial function at the level of sorts�

Atomic formulas are either ��equations� or memberships of the form t � s�
where the term t has kind k and s � Sk� General sentences are Horn clauses
on these atomic formulas� quanti�ed by �nite sets of K�kinded variables� That
is� they are either conditional equations

��X� t � t� if �
�
i

ui � vi� � �
�
j

wj � sj�

or conditional memberships of the form

��X� t � s if �
�
i

ui � vi� � �
�
j

wj � sj��

Such memberships are a generalization of sort constraints ���� and can be used
to specify partial functions� that become de�ned when their arguments satisfy
certain equational and membership conditions�

Order�sorted notation can also be used for convenience� and we do so in Maude�
Thus� a subsort declaration s � s� abbreviates the conditional membership
axiom ��x� x � s� if x � s� Similarly� an operator declaration f � s� � � � sn �
s� at the sort level corresponds to an operator declaration at the kind level
together with the conditional membership axiom ��x�� � � � � xn� f�x�� � � � � xn� �
s� if x� � s� � � � � � xn � sn�

Membership equational logic has all the usual good properties� soundness and
completeness of appropriate rules of deduction� initial and free algebras� rela�
tively free algebras along theory morphisms� and so on �����

��� Functional Modules

In Maude� functional modules are equational theories in membership equa�
tional logic satisfying some additional requirements� Computation in a func�
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tional module is accomplished by using the equations as rewrite rules until
a canonical form is found� This is the reason why the equations must satisfy
the additional requirements of being Church�Rosser� terminating� and sort de�
creasing ���� This guarantees that all terms in an equivalence class modulo
the equations will rewrite to a unique canonical form� and that this canonical
form can be assigned a sort that is smaller than all other sorts assignable to
terms in the class� Since Maude supports rewriting modulo equational theories
such as associativity� commutativity� and identity� all that we say has to be
understood for equational rewriting modulo such axioms �����

We explain now the syntactic treatment in Maude of kinds� variables� and
conditions in conditional equations and membership axioms�

With respect to kinds� Maude does automatic kind inference from the sorts
declared by the user and their subsort relations� but kinds are not explicitly
named� instead� a kind k is identi�ed with the set Sk of its sorts� interpreted as
an equivalence class modulo the equivalence relation generated by the subsort
ordering� that is� two sorts are in this equivalence relation if and only if they
belong to the same connected component in the poset of sorts� Therefore�
for any s � Sk� �s� denotes the kind k � Sk� understood as the connected
component of the poset of sorts to which s belongs�

As an example that will be developed step by step in this section� let us
consider as given a graph speci�cation

sorts Node Edge �

ops source target � Edge �� Node �

with operations giving the source and target nodes of each edge� as well as
speci�c edge and node constants that need not concern us here� Then� we
extend such a speci�cation by declaring a sort Path of paths over the graph�
together with a partial concatenation operator� and appropriate source and
target functions over paths as follows� where the subsort declaration states
that edges are �unitary� paths�

sort Path �

subsort Edge � Path �

op ��� � �Path� �Path� �� �Path� �

ops source target � Path �� Node �

This illustrates the idea that in Maude sorts are user�de�ned� while kinds are
implicitly associated with connected components of sorts and are considered
as �error supersorts�� The Maude system also lifts automatically to kinds all
the operators involving sorts of the corresponding connected components to
form error expressions� Such error expressions allow us to give expressions to
be evaluated the bene�t of the doubt� if� when they are simpli�ed� they have

�



a legal sort� then they are ok� otherwise� the fully simpli�ed error expression
is returned as an error message�

Variables in a Maude module do not have to be declared in variable declara�
tions� they can appear directly in terms� A variable consists of an identi�er
composed of a name� followed by a colon� followed by either a sort or a kind
name� For example� P�Path is a variable of sort Path� Variable declarations
are still allowed for convenience� for example� the declaration var P � Path

allows using the name P as an abbreviation for the variable P�Path�

Equational conditions in conditional equations and memberships are made up
of individual equations t � t� and memberships t � s by a binary conjunction
connective �� which is assumed associative� Furthermore� the concrete syntax
of equations in conditions has two variants� namely� ordinary equations t �

t�� and matching equations t �� t��

For example� the following axioms express the condition de�ning path con�
catenation and the associativity of this operator�

var E � Edge �

vars P Q R S � Path �

cmb E � P � Path if target	E
 � source	P
 �

ceq 	P � Q
 � R � P � 	Q � R


if target	P
 � source	Q
 �
 target	Q
 � source	R
 �

The conditional membership axiom �introduced by the keyword cmb� states
that an edge concatenated with a path is also a path when the target node
of the edge coincides with the source node of the path� This has the e
ect of
de�ning path concatenation as a partial function on paths� although it is total
on the kind �Path� of �confused paths�� Instead of giving the above associa�
tivity equation explicitly �by means of the conditional equation introduced by
the keyword ceq�� if we wanted to apply the axioms modulo associativity� we
could have declared an associativity equational attribute in the declaration of
the operator�

op ��� � �Path� �Path� �� �Path� �assoc� �

Assuming variables P� E� and S declared as above� source and target functions
over paths are de�ned by means of matching equations in conditions as follows�

ceq source	P
 � source	E
 if E � S �� P �

ceq target	P
 � target	S
 if E � S �� P �

Matching equations are mathematically interpreted as ordinary equations�
however� operationally they are treated in a special way and they must satisfy
special requirements� Note that the variables E and S in the above matching
equation do not appear in the lefthand sides of the corresponding conditional






equations� In the execution of these equations� these new variables become
instantiated by matching the term E 	 S against the subject term bound to
the variable P� In order for this match to decide the equality with the ground
term bound to P� the term E 	 S must be a pattern� Given a functional mod�
ule M � we call a term t an M�pattern if for any well�formed substitution �

such that for each variable x in its domain the term ��x� is in canonical form
with respect to the equations in M � then ��t� is also in canonical form� A
su�cient condition for t to be an M�pattern is the absence of uni�ers between
its nonvariable subterms and lefthand sides of equations in M �

Ordinary equations t � t� in conditions have instead the usual operational
interpretation� that is� for the given substitution �� ��t� and ��t�� are both
reduced to canonical form and compared for equality� modulo the equational
axioms speci�ed in the module�s operator declarations such as associativity�
commutativity� and identity�

All conditional equations t � t� if C� � � � � � Cn in a functional module M
have to satisfy the following admissibility requirements� � ensuring that all the
extra variables will become instantiated by matching�

��� vars�t�� � vars�t� �
n�
j��

vars�Cj��

��� If Ci is an equation ui � u�i or a membership ui � s� then

vars�Ci� � vars�t� �
i���
j��

vars�Cj��

�	� If Ci is a matching equation ui �� u�i� then ui is an M �pattern and

vars�u�i� � vars�t� �
i���
j��

vars�Cj��

The satisfaction of the conditions is attempted sequentially from left to right�
Since matching takes place modulo equational attributes� in general many
di
erent matches may have to be tried until a match of all the variables
satisfying the condition is found�

As mentioned before� we expect functional modules to be Church�Rosser and
terminating membership equational logic speci�cations in the sense of ��� Sec�
tion ������ The above admissibility requirements and the Church�Rosser and
termination assumptions are dropped for functional theories �see Section ����
which support the full generality of the logic�

� These requirements include as a special case what are called properly oriented
and right stable ��CTRSs in ����� when each equation si � ti in their conditions is
expressed as a matching equation ti �� si�
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In membership equational logic the Church�Rosser property of terminating
and sort�decreasing equations is indeed equivalent to the con�uence of their
critical pairs in an appropriately generalized sense ���� Furthermore� both
equality and membership of a term in a sort are then decidable properties ����
That is� the equality and membership predicates are computable functions�
We can then use the metatheorem of Bergstra and Tucker �	� to conclude that
such predicates are themselves speci�able by Church�Rosser and terminating
equations as Boolean�valued functions� This has the pleasant consequence of
allowing us to include inequalities t �� t� and negations of membership asser�
tions not�t � s� in conditions of equations and of membership axioms� since
such seemingly negative predicates can also be axiomatized inside the logic in a
positive way� provided that we have a subspeci�cation of �not necessarily free�
constructors in which to do it� and that the speci�cation is indeed Church�
Rosser� terminating� and sort decreasing� Of course� in practice they do not

have to be explicitly axiomatized� since they are built into the implementation
of rewriting deduction in a much more e�cient way�

Indeed� by default� Maude modules implicitly import a prede�ned BOOL mod�
ule providing Boolean values true and false� and operators 
and
� 
or
�
and not
� In addition� this imported prede�ned module provides the seman�
tic equality operator 
��
 checked by equational simpli�cation� its negation

���
� a conditional operator if
then
else
fi� and a membership predicate

��
� For example� the associativity property could also be speci�ed as

ceq 	P � Q
 � R � P � 	Q � R


if target	P
 �� source	Q
 and target	Q
 �� source	R
 �

More generally� a Boolean expression b is allowed to appear as a conjunct in
an equational condition as a shorthand for the equation b � true�

If a collection of �conditional� equations is Church�Rosser and terminating�
given an expression� no matter how the equations are used from left to right
as simpli�cation rules� any reduction strategy will reach a normal form and
moreover we will always reach the same �nal result� However� even though the
�nal result may be the same� some orders of evaluation can be considerably
more e�cient than others� It may therefore be useful to have some way of
controlling the way in which equations are applied by means of strategies�

Typically� a functional language is either eager� or lazy with some strictness
analysis added for e�ciency� and the user has to live with whatever the lan�
guage provides� Maude adopts OBJ	�s �exible method of user�speci�ed eval�
uation strategies on an operator�by�operator basis �	
�� adding some improve�
ments to the OBJ	 approach to ensure a correct implementation �		�� For
an n�ary operator f such strategies are speci�ed as lists i� � � � im of numbers�
with im � �� and � � ij � n� for j � �� � � � � m � �� For example� the default

�



bottom�up eager strategy given in Maude to an n�ary operator f � when no
strategy is explicitly declared by the user� is �� � � � n ��� stating that in eval�
uating a term f�t�� � � � � tn�� the subterms t�� � � � � tn are evaluated in this order
before applying the equations for f to the whole term� Similarly� the strategy
given to if
then
else
fi is �� � � 	 ��� stating that it is enough to evaluate
the Boolean condition in the �rst argument before trying the evaluation of
the whole term� In addition to improving e�ciency� operator strategies allow
us to compute with in�nite data structures which are evaluated on demand�
for example� a lazy �cons� list constructor may have strategy ���� The paper
�		� documents in detail the operational semantics and the implementation
techniques for Maude�s operator evaluation strategies� their concrete syntax
as attributes in operator declarations is explained in �����

As in the OBJ family of languages �	
�� functional modules can be unpa�
rameterized� or they can be parameterized with functional theories as their
parameters �see Section � for more details�� Functional theories are also mem�
bership equational logic theories� but they do not need to be Church�Rosser
and terminating� They have a loose interpretation� in the sense that any al�
gebra satisfying the equations and membership axioms in the theory is an
acceptable model� On the other hand� the semantics of an unparameterized
functional module is the initial algebra speci�ed by its theory� The seman�
tics of a parameterized functional module is the free functor associated to the
inclusion of the parameter theory into the body of the parameterized mod�
ule �����
�� For example� the semantics of a list module LIST�X �� TRIV�

parameterized over the simple parameter theory TRIV with only one sort Elt
�see Section ��	� is the functor sending each set to the algebra of lists over
this set� Similarly� the semantics of a sorting module SORTING�Y �� POSET�

parameterized over the POSET functional theory �see Section ���� is the functor
sending each poset to the algebra of lists for that poset with a sorting function�

��� Example� Arrays as Lists of Pairs

We �nish this section with a functional module illustrating Maude�s support
for mix�x user�de�nable syntax and for module hierarchies �see Section �����

An array of integers is represented as a list of pairs of integers� where the �rst
component of each pair corresponds to the array position and the second to
the value in that position� A list of pairs of this kind is the representation
of an array if either it is empty� or the �rst components of the pairs are all
di
erent and the positions of consecutive pairs are consecutive numbers�

The �rst module imports the prede�ned module MACHINE�INT� providing inte�
gers and usual arithmetic operations on them� Then� it de�nes a sort IntPair
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for pairs of integers with �


� as only constructor � �notice the ctor at�
tribute specifying that this operator is a constructor of the sort�� These pairs
are used as components of lists� de�ned with the concatenation operator 

 as
the main constructor� declared with both an attribute assoc for associativity�
and an attribute id� nil for the empty list nil as two�sided identity� Unitary
lists are obtained with a subsort declaration�

fmod INT�PAIR�LIST is

protecting MACHINE�INT �

sort IntPair �

op 		���

 � MachineInt MachineInt �� IntPair �ctor� �

sort IntPairList �

subsort IntPair � IntPairList �

op nil � �� IntPairList �ctor� �

op �� � IntPairList IntPairList �� IntPairList

�ctor assoc id� nil� �

endfm

The following module INT�ARRAY imports the previous one� and then uses
�conditional� memberships to specify the subsort IntArray of lists represent�
ing arrays� The sort NeIntArray is the subsort of nonempty such lists� The
module INT�ARRAY de�nes two usual partial operators on arrays� 
�
� to ob�
tain the value stored in the array at a given position� and 
�
��
� to modify
the value at a particular position� Notice that the partiality of such opera�
tors is re�ected in their declarations as returning values in a kind instead of
a sort� Finally� the operators low and high return� respectively� the �rst and
last positions of a given nonempty array�

fmod INT�ARRAY is

protecting INT�PAIR�LIST �

sorts NeIntArray IntArray �

subsorts IntPair � NeIntArray � IntArray � IntPairList �

op ���� � NeIntArray MachineInt �� �MachineInt� �

op ������� � NeIntArray MachineInt MachineInt �� �IntArray� �

ops low high � NeIntArray �� MachineInt �

vars I J X Y � MachineInt �

vars L L� � IntPairList �

mb nil � IntArray �

cmb 	I� X
 	J� Y
 L � NeIntArray

if I � � � J �
 	J� Y
 L � NeIntArray �

� Since parentheses are normally used for disambiguation� in order to correctly
declare this operation� it is necessary to write 		 � 

�

��



ceq 	L 	I� X
 L�
�I� � X if L 	I� X
 L� � NeIntArray �

ceq 	L 	I� X
 L�
�I �� Y� � 	L 	I� Y
 L�


if L 	I� X
 L� � NeIntArray �

ceq low		I� X
 L
 � I if 	I� X
 L � NeIntArray �

ceq high	L 	I� X

 � I if L 	I� X
 � NeIntArray �

endfm

We remark that in all the conditional equations above there are memberships
in the conditions� making sure that the arguments belong to the appropriate
sorts� These checks guarantee that the equations are applied only to terms hav�
ing a sort �in addition to having a kind� which is checked at parsing time� and
therefore that computation takes place over �good� terms� since terms that
fail to have a sort are considered �error� terms� Equations intended for error
and exception recovery should not include such memberships in conditions�

� Rewriting Logic and System Modules

The type of rewriting typical of functional modules terminates with a single
value as its outcome� In such modules� each step of rewriting is a step of
replacement of equals by equals� until we �nd the equivalent� fully evaluated
value� In general� however� a set of rewrite rules need not be terminating� and
need not be Church�Rosser� That is� not only can we have in�nite chains of
rewriting� but we may also have highly divergent rewriting paths� that could
never cross each other by further rewriting�

The essential idea of rewriting logic ��	� is that the semantics of rewriting
can be drastically changed in a very fruitful way� We no longer interpret a
term t as a functional expression� but as a state of a system� and we no longer
interpret a rewrite rule t �� t� as an equality� but as a local state transition�
stating that if a portion of a system�s state exhibits the pattern described by
t� then that portion of the system can change to the corresponding instance
of t�� Furthermore� such a local state change can take place independently
from� and therefore concurrently with� any other non�overlapping local state
changes� Rewriting logic is therefore a logic of concurrent state change�

��� Rewriting Logic

A signature in rewriting logic is an equational theory ��� E�� where � is an
equational signature and E is a set of ��equations� Rewriting will operate
on equivalence classes of terms modulo E� for example� string rewriting is
obtained by imposing an associativity axiom� multiset rewriting by imposing
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associativity and commutativity� and standard term rewriting is obtained as
the particular case in which the set of equations E is empty� Techniques for
rewriting modulo equations have been studied extensively ����	����� and can
be used to implement rewriting modulo many equational theories of interest�
This is precisely what Maude does� using the equational attributes given in
operator declarations�such as associativity� commutativity� and identity�to
rewrite modulo such axioms�

Sentences over a signature ��� E� have the form �t�E �� �t��E� where t and t�

are ��terms possibly involving some variables� and �t�E denotes the equivalence
class of the term t modulo the equations E �usually� we omit the subscript and
simply write �t��� A rewrite theory R is a ��tuple R � ��� E� L�R� where � is
an equational signature� E is a set of ��equations� L is a set of labels� and R is
a set of labelled rewrite rules either of the unconditional form r � �t� �� �t���
or of the conditional form explained in Section 	���

Rewriting logic is a logic for reasoning about concurrent systems having states�
and evolving by means of transitions� The signature of a rewrite theory de�
scribes a particular structure for the states of a system� and the rewrite rules
describe which elementary local transitions are possible in the distributed
state� The inference rules of rewriting logic ��	� allow to deduce general con�
current transitions which are possible in a system satisfying such a description�

��� System Modules

The most general Maude modules are system modules� They specify the initial
model TR of a rewrite theory R � ��� E� L�R� in the membership equational
logic variant of rewriting logic �for a detailed construction of TR in the un�
sorted case see ��	��� These initial models capture nicely the intuitive idea of
�rewrite systems� in the sense that they are transition systems whose states
are equivalence classes �t� of ground terms modulo the equations E in R� and
whose transitions are proofs � � �t� �� �t�� in rewriting logic� that is� concur�
rent rewriting computations in the system described by the rules in R� Such
proofs are equated modulo a natural notion of proof equivalence that com�
putationally corresponds to the �true concurrency� of the computations� By
adopting a logical instead of a computational perspective� we can alternatively
view such models as �logical systems� in which formulas are validly rewritten
to other formulas by concurrent rewritings which correspond to proofs for the
logic in question� These models have a natural category structure� with states
�or formulas� as objects� transitions �or proofs� as morphisms� and sequential
composition as morphism composition� and in them dynamic behavior exactly
corresponds to deduction� In the parameterized case �see Section ��� the inclu�
sion from the parameter�s� into the module then gives rise to a free extension

�	



functor ����� which provides the semantics for the module�

As a �rst example of system module� we consider an extension of the module
de�ning integer arrays in Section ��	�

mod INT�SORTING is

protecting INT�ARRAY �

vars I J X Y � MachineInt �

var L � IntPairList �

crl �sort� � 	I� X
 L 	J� Y
 �� 	I� Y
 L 	J� X


if X � Y �
 	I� X
 L 	J� Y
 � NeIntArray �

endm

For this system module� the corresponding rewrite theory ��� E� L�R� consists
of� a signature � given by the sorts� subsort relations� and operator declara�
tions in INT�ARRAY� along with a set of equations and memberships E also
declared in INT�ARRAY� a label set L that only contains the label sort� and a
set of rules R that consists of the conditional rule �introduced by the keyword
crl� on integer arrays that exchanges two values when they are out of place�
The system thus described is highly concurrent� since the sort rule can be
applied concurrently to many di
erent positions in the array� This speci�ca�
tion happens to be con�uent and terminating� but in general these properties
do not hold for other system modules�

Computations need not be con�uent �indeed� they can be highly nondetermin�
istic� and need not be terminating� Therefore� the issue of executing rewriting
logic speci�cations of system modules in general is considerably more subtle
than executing expressions in a functional module� for which the termination
and Church�Rosser properties guarantee a unique �nal result regardless of the
order in which equations are applied as simpli�cation rules� Hence� we need to
have good ways of controlling the rewriting inference process�which in prin�
ciple could go in many undesired directions�by means of adequate strategies�
As we explain in Section �� using re�ection the rewriting inference process
can be controlled with great �exibility in Maude by means of strategies that
are de�ned by rewrite rules at the metalevel� However� the Maude interpreter
provides a default strategy for executing expressions in system modules �see
the end of this subsection��

At the equational level� system modules satisfy the same equational require�
ments already described for functional modules� including the requirement
that the equations are Church�Rosser and terminating modulo the given equa�
tional axioms� Furthermore� rewrite rules can take the most general possible
form in the variant of rewriting logic built on top of membership equational
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logic� that is� they are of the form

t� t� if �
�
i

ui � vi� � �
�
j

wj � sj� � �
�
k

pk � qk�

with no restriction on which new variables may appear in the righthand side
or the condition� That is� conditions in rules are also formed by an associa�
tive conjunction connective ��� but they generalize conditions in equations
and memberships by allowing also rewrite expressions� for which the concrete
syntax t �� t� is used� Furthermore� equations� memberships� and rewrites
can be intermixed in any order� and� as for functional modules� some of the
equations in conditions can be matching equations�

Of course� in that full generality the execution of a system module will require
strategies that control at the metalevel the instantiation of the extra variables
in the condition and in the righthand side �������� However� a quite general
class of system modules� called admissible modules� are executable by Maude�s
default interpreter� As already mentioned� the equational part of a system
module must always satisfy the same requirements given in Section ��� for
functional modules� furthermore� as explained later in this section� its rules
must be coherent with respect to its equations� A system module M is called
admissible if� in addition to the above requirements� each of its rewrite rules

t� t� if C� � � � � � Cn

satis�es the admissibility requirements �����	� in Section ��� plus the addi�
tional requirement

��� If Ci is a rewrite ui � u�i� then

vars�ui� � vars�t� �
i���
j��

vars�Cj��

and u�i is an E�M��pattern� for E�M� the equational theory underlying
the module M �

Operationally� we try to satisfy such a rewrite condition by reducing the in�
stance ��ui� to canonical form vi with respect to the equations� and then
trying to �nd a rewrite proof vi � wi with wi in canonical form with respect
to the equations and such that wi is a substitution instance of u�i�

As for functional modules� when executing a conditional rule in an admissible
system module� the satisfaction of all its conditions is attempted sequentially
from left to right� but notice that now� besides the fact that many matches for
the equational conditions may be possible due to the presence of equational
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axioms� we also have to deal with the fact that solving rewrite conditions re�
quires search� including searching for new solutions when previous ones fail to
satisfy subsequent conditions� The default interpreter supports search compu�
tations� in which the search is controlled by means of several parameters� In
general� the conditions solved by the default interpreter may be conjunctions
of rewrites� memberships� and equations� with appropriate restrictions on the
occurrence of new variables in the conjuncts�

We illustrate Maude�s syntax for system modules by means of an admissible
module from ���� that de�nes the transition system semantics for Milner�s CCS
���� in such a way that transitions correspond to rewrites� that is� a rewrite
P �� �A�Q means that process P has performed action A becoming process

Q� which is usually written as P
A
�� Q� Full CCS is represented� including

possibly recursive process de�nitions by means of contexts� The reader can
�nd the modules de�ning the missing pieces of the syntax in Appendix A���

mod CCS�SEMANTICS�TRANS is

protecting CCS�CONTEXT �

sort ActProcess �

subsort Process � ActProcess �

op ���� � Act ActProcess �� ActProcess �ctor� �

vars L M � Label � var A � Act �

vars P P� Q Q� � Process � var X � ProcessId �

��� Prefix

rl �pref� � A � P �� �A�P �

��� Summation

crl �sum� � P � Q �� �A�P� if P �� �A�P� �

��� Composition

crl �par� � P � Q �� �A�	P� � Q
 if P �� �A�P� �

crl �par� � P � Q �� �tau�	P� � Q�


if P �� �L�P� �
 Q �� �� L�Q� �

��� Restriction

crl �res� � P 
 L �� �A�	P� 
 L


if P �� �A�P� �
 	A ��� L
 �
 	A ��� � L
 �

��� Relabelling

crl �rel� � P�M � L� �� �M�	P��M � L�
 if P �� �L�P� �

crl �rel� � P�M � L� �� �� M�	P��M � L�
 if P �� �� L�P� �

crl �rel� � P�M � L� �� �A�	P��M � L�


if P �� �A�P� �
 	A ��� L
 �
 	A ��� � L
 �

��� Definition

crl �def� X �� �A�P�

��



if 	X definedIn context
 �
 def	X� context
 �� �A�P� �

endm

This representation of CCS in Maude is semantically correct in the sense that
given a CCS process P � there are processes P�� � � � � Pk�� such that

P
a��� P�

a��� 	 	 	
ak��

�� Pk��
ak�� P �

if and only if P can be rewritten into �a������ak�P� �see ������

A rewrite theory has both rules and equations� so that rewriting is performed
modulo such equations� However� this does not mean that the Maude imple�
mentation must have a matching algorithm for each equational theory that
a user might specify� In fact� this is impossible� since matching modulo an
arbitrary theory is undecidable� The proposed solution is to divide the equa�
tions E into a set A of axioms� for which matching algorithms exist in the
Maude implementation� � and a set E � of equations that are Church�Rosser�
terminating� and sort decreasing modulo A� that is� the equational part must
satisfy the same requirements as a functional module�

Moreover� we require that the rules R in the module are coherent ��
� �or at
least what might be called �weakly coherent� �������� with the equations E �

modulo A� This means that appropriate critical pairs between rules and equa�
tions are joinable� allowing us to intermix rewriting with rules and rewriting
with equations without losing rewrite computations by failing to perform a
rewrite that would have been possible before an equational deduction step
was taken� In this way� we get the e
ect of rewriting modulo E � �A with just
a matching algorithm for A�

Under these circumstances� the default strategy in the Maude interpreter ap�
plies the rules in a top�down rule fair way� � always reducing to canonical form
using E � before applying any rule in R� More speci�cally� before the applica�
tion of each rewrite rule� the expression is simpli�ed to its canonical form
by applying the equations E � modulo A� then� the rule is applied to such a
simpli�ed expression modulo the axioms A according to the default strategy�

� Maude�s rewrite engine has an extensible design� so that matching algorithms
for new theories can be added and can be combined with existing ones ��	�� As
already mentioned� matching modulo associativity� commutativity� and �left�� right�
or two�sided� identity� and combinations of these attributes are supported�
� �Top�down� means that each rewrite is attempted beginning at the top of the
term� so that any position rewritten does not have a position above it that could
also have been rewritten� A limited form of fairness is achieved by keeping the rules
in a circular list� and moving a rule to the end of the list after it has been applied�
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��� Example� Blocks World

As another example of a system module� we specify a simple concurrent sys�
tem� the blocks world� a typical example in arti�cial intelligence circles� In
this version there is a table on top of which we have the blocks� which can be
moved by means of three actions� A block is represented as a record with three
�elds� a label identifying the block �given by a quoted identi�er� as provided
in the prede�ned module QID�� the label of the block on top �or the constant
clear if there is none�� and the label of the block below �or the constant table
if there is none because the block is on the table�� A state of the blocks world
is then represented as a set of such blocks that is consistent in the sense that
each block has a di
erent label� and that for each pair of blocks a and b� if a
is on top of b� then b is below a� In the module below we only make explicit
the �rst part of the consistency check �all block labels are di
erent��

mod BLOCKS�WORLD is

protecting QID �

sorts Up Down �

subsorts Qid � Up Down �

op clear � �� Up �ctor� �

op table � �� Down �ctor� �

sort Block �

op �label��� under��� on��� � Qid Up Down �� Block �ctor� �

sort State �

subsort Block � State �

op empty � �� State �ctor� �

op �� � State State �� �State� �ctor assoc comm id� empty� �

op free � Qid State �� Bool �

vars X Y Z � Qid � vars S S� � State �

var U U� � Up � vars O O� � Down �

cmb �label� X� under� U� on� O� S � State if free	X� S
 �

eq free	X� empty
 � true �

ceq free	X� S
 � X ��� Y and free	X� S�


if �label� Y� under� U� on� O� S� �� S �

rl �move� � �label� X� under� clear� on� Z�

�label� Z� under� X� on� O�

�label� Y� under� clear� on� O��

�� �label� X� under� clear� on� Y�

�label� Z� under� clear� on� O�

�label� Y� under� X� on� O�� �

rl �unstack� � �label� X� under� clear� on� Z�

��
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Fig� �� Initial and �nal states in a world with three blocks�

�label� Z� under� X� on� O�

�� �label� X� under� clear� on� table�

�label� Z� under� clear� on� O� �

rl �stack� � �label� X� under� clear� on� table�

�label� Z� under� clear� on� O�

�� �label� X� under� clear� on� Z�

�label� Z� under� X� on� O� �

endm

The rule move moves a block X sitting on top of another block Z to the top of
block Y� The rule unstack moves a block X sitting on top of another block Z

to the table� whereas the rule stack does the reverse action�

Consider for example the states described in Figure �� The initial state I on
the left and the �nal state F on the right are respectively described by the
following two terms of sort State�

�label� �a� under� �c� on� table�

�label� �c� under� clear� on� �a�

�label� �b� under� clear� on� table�

�label� �c� under� �b� on� table�

�label� �b� under� �a� on� �c�

�label� �a� under� clear� on� �b�

The fact that the �sequential plan� �in a self�explanatory intuitive notation�
unstack�c� a�� stack�b� c�� stack�a� b� moves the blocks from state I to state
F corresponds directly to a sequence of computational rewrite steps applying
the corresponding rewrite rules�

��� Object�Oriented Modules

Among the many concurrent systems that we can specify as system modules
in Maude� concurrent object�oriented systems are an important subclass �����
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In a concurrent object�oriented system the concurrent state� which is usu�
ally called a con�guration� has typically the structure of a multiset made up
of objects and messages that evolves by concurrent rewriting modulo asso�
ciativity� commutativity and identity� using rules that describe the e
ects of
communication events between objects and messages�

An object in a given state is represented in Maude as a term

� O � C � a�� v�
 � � � 
 an� vn �

where O is the object�s name or identi�er� C is its class identi�er� the ai�s
are the names of the object�s attribute identi�ers� and the vi�s are the corre�
sponding values� Messages do not have a �xed syntactic form� such syntactic
form is de�ned by the user for each application� The concurrent state of an
object�oriented system is then a multiset of objects and messages� called a
Configuration� with multiset union described with empty syntax 

�

The following module CONFIGURATION de�nes the basic concepts of concurrent
object systems� Note that the sorts Msg and Attribute� as well as the sorts
Oid and Cid of object and class identi�ers� are left unspeci�ed� They will
become fully de�ned when the CONFIGURATION module is extended by speci�c
object�oriented de�nitions in a given object�oriented module�

fmod CONFIGURATION is

sorts Oid Cid Attribute AttributeSet

Object Msg Configuration �

subsorts Object Msg � Configuration �

subsort Attribute � AttributeSet �

op none � �� AttributeSet �ctor� �

op ��� � AttributeSet AttributeSet �� AttributeSet

�ctor assoc comm id� none� �

op ������� � Oid Cid AttributeSet �� Object �ctor� �

op none � �� Configuration �ctor� �

op �� � Configuration Configuration �� Configuration

�ctor assoc comm id� none� �

endfm

Concurrent object�oriented systems are de�ned in Maude by means of object�
oriented modules�introduced by the keyword omod�using a syntax more con�
venient than that of system modules because it assumes acquaintance with the
basic entities� such as objects� messages� and con�gurations� and supports lin�
guistic distinctions appropriate for the object�oriented case� In particular� all
object�oriented modules implicitly include the above CONFIGURATION module
and assume its syntax�

Classes are de�ned with the keyword class� followed by the name of the class
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C� and by a list of attribute declarations separated by commas� Each attribute
declaration has the form a � S� where a is an attribute identi�er and S is the
sort in which the values of the attribute range� that is� class declarations have
the form class C � a�� S�
 � � � 
 an� Sn �

The rewrite rules in an object�oriented module specify in a declarative way the
behavior associated with the messages� The multiset structure of the con�g�
uration provides the top�level distributed structure of the system and allows
concurrent application of the rules �����

By convention� the only object attributes made explicit in a rule are those rele�
vant for that rule� In particular� the attributes mentioned only on the lefthand
side of the rule are preserved unchanged� the original values of attributes men�
tioned only on the righthand side of the rule do not matter� and all attributes
not explicitly mentioned are left unchanged�

The following object�oriented module gives an object�oriented speci�cation of
the blocks world described in Section 	�	� A block is now represented as an
object with two attributes� under� saying whether it is under another block
or it is clear� and on� saying whether the block is on top of another block or
is on the table�

omod OO�BLOCKS�WORLD is

protecting QID �

sorts BlockId Up Down �

subsorts Qid � BlockId � Oid �

subsorts BlockId � Up Down �

op clear � �� Up �ctor� �

op table � �� Down �ctor� �

class Block � under � Up� on � Down �

vars X Y Z � BlockId �

rl �move� � � X � Block � under � clear� on � Z �

� Z � Block � under � X �

� Y � Block � under � clear �

�� � X � Block � on � Y �

� Z � Block � under � clear �

� Y � Block � under � X � �

rl �unstack� � � X � Block � under � clear� on � Z �

� Z � Block � under � X �

�� � X � Block � on � table �

� Z � Block � under � clear � �

rl �stack� � � X � Block � under � clear� on � table �

� Z � Block � under � clear �

�� � X � Block � on � Z �

��



� Z � Block � under � X � �

endom

The states I and F in Figure � are respectively described now by the following
two con�gurations�

� �a � Block � under � �c� on � table �

� �c � Block � under � clear� on � �a �

� �b � Block � under � clear� on � table �

� �c � Block � under � �b� on � table �

� �b � Block � under � �a� on � �c �

� �a � Block � under � clear� on � �b �

Class inheritance is directly supported by Maude�s order�sorted type struc�
ture� A subclass declaration C � C� in an object�oriented module is just a
particular case of a subsort declaration� The e
ect of a subclass declaration is
that the attributes� messages� and rules of all the superclasses as well as the
newly de�ned attributes� messages� and rules of the subclass characterize the
structure and behavior of the objects in the subclass�

Suppose that the blocks world is further re�ned so that now blocks can have
colors� but we still want the rules for manipulating blocks to remain the same�
This is trivially achieved by class inheritance as illustrated by the following
module�

omod OO�BLOCKS�WORLD�COLOR is

including OO�BLOCKS�WORLD �

sort Color �

ops red blue yellow � �� Color �ctor� �

class ColoredBlock � color � Color �

subclass ColoredBlock � Block �

endom

In this example� there is only one class immediately above ColoredBlock�
namely� Block� but a class may in general be de�ned as a subclass of several
classes� i�e�� multiple inheritance is also supported� If an attribute and its sort
have already been declared in a superclass� they should not be declared again
in the subclass� indeed� all such attributes are inherited� In the case of multiple
inheritance� when an attribute occurs in two di
erent superclasses� then the
sort associated to it in each of those superclasses must be the same� Then� a
class inherits all the attributes� messages� and rules from all its superclasses�
An object in the subclass behaves exactly as any object in any of the super�
classes� but it may exhibit additional behavior due to the introduction of new
attributes� messages� and rules in the subclass�

The semantics of object�oriented modules is entirely reducible to that of sys�
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tem modules� in the sense that each object�oriented module can be translated
into a corresponding system module whose semantics is by de�nition that
of the original object�oriented module �����
�� In particular� rewrite rules are
modi�ed to make them applicable to all objects of the given classes and of
their subclasses� that is� not only to objects whose class identi�ers are those
explicitly given�

However� although Maude�s object�oriented modules are in this way reduced
to system modules� there are of course important conceptual advantages pro�
vided by the syntax of object�oriented modules� This syntax allows the user to
think and express his or her thoughts in object�oriented terms whenever such
a viewpoint seems best suited for the problem at hand� Those conceptual ad�
vantages would be lost if only system modules were provided� For example� in
an object�oriented con�guration we have objects that maintain their identity
across their state changes� and the notions of fairness adequate for them are
more specialized than those appropriate for arbitrary system modules� This
is because� since each object has an individual identity� fairness should now
be localized to individual objects and messages� which should not be starved
even when other similar objects and messages are rewritten�

In summary� the approach taken in Maude is to provide a logical semantics
for concurrent object�oriented programming by taking rewriting logic as its
foundation� and then de�ning in a rigorous way higher�level object�oriented
concepts above such a foundation� The papers ������� provide good background
on such foundations� Talcott�s papers ������� give rewriting logic foundations
for actors from a somewhat di
erent viewpoint� The paper ��	� shows how�
for object�oriented modules satisfying some simple requirements� their ini�
tial model semantics coincides with a very natural truly concurrent semantics
based on a partial order of events�

One important strength of the object�oriented viewpoint is that all kinds of
entities in the external world can be conceptualized as objects and can be
interacted with from a computation by message passing� Built�in objects ex�
tend Maude with interfaces allowing interaction with external entities such
as internet sockets� �le systems� window systems� and so on� In this way� the
computation can be connected with the external world and with other Maude
computations in di
erent machines in a distributed way� Interfaces to exter�
nal entities are speci�ed by means of built�in object�oriented modules de�ning
built�in objects�

Such built�in object�oriented modules can be imported by ordinary object�
oriented modules so that� in general� the object�oriented state of a computa�
tion consists of two parts� a con�guration of ordinary objects and messages
that is represented in Maude as a multiset of terms representing such objects
and messages� and a set of built�in objects� together with messages to and
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from those objects� Conceptually we can think of these two parts as a sin�
gle bigger con�guration of objects and messages� However� built�in objects
are not themselves visible in the con�guration of ordinary objects and mes�
sages� except indirectly� through the messages that they send� In particular�
the internal structure of built�in objects is hidden� so that they can only be
interacted with by asynchronous message passing�

� Module Operations and Parameterized Programming

Speci�cations and code should be structured inmodules of relatively small size
to facilitate understandability of large systems� increase reusability of compo�
nents� and localize the e
ects of system changes� Maude fully supports these
goals by means of a rich and extensible module algebra supporting� in particu�
lar� parameterized programming techniques in the OBJ	 style �	
�� Moreover�
Maude provides useful basic support for modularity by allowing the de�nition
of module hierarchies� that is� acyclic graphs of module importations�

Parameterized modules� theories� and views are the basic building blocks of
parameterized programming ����	
�����	�� As in OBJ� a theory � de�nes the
interface of a parameterized module� that is� the structure and properties
required of an actual parameter� The instantiation of the formal parameters
of a parameterized module with actual parameter modules requires a view
from the formal interface theory to the corresponding actual module� That is�
views provide the interpretation of the actual parameters� For more details on
parameterized modules in Maude� the reader is advised to consult ��
��

��� Module Hierarchies

Mathematically� we can think of module hierarchies as partial orders of rewrite
theory inclusions� that is� the theory of the importing module contains the
theories of its submodules as subtheories� Recall that a rewrite theory is a four�
tuple R � ��� E� L�R�� where ��� E� is a theory in membership equational
logic� As already explained in Section 	��� a system module is a rewrite theory
with initial semantics� Note that we can use the inclusion of membership
equational logic into rewriting logic to view a functional module specifying
an equational theory ��� E� as a degenerate case of a rewrite theory� namely
the rewrite theory ��� E� 
� 
�� In fact the initial algebra of ��� E� and the

� The reader should be careful in not confusing the di�erent uses of the word
�theory� in this section�
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initial model of ��� E� 
� 
� coincide ��	�� Therefore� in essence we can view all
modules as rewrite theories�

The most general form of module inclusion is provided by the including

keyword� followed by the name of the imported module� The protecting

keyword is a more restricted form of inclusion� in the sense that it makes a
semantic assertion about the relationship between the initial models of the
two theories� Let R � ��� E� L�R� be the rewrite theory speci�ed by a system
module� and letR� � ���� E �� L�� R�� be the theory of a supermodule� so that we
have a theory inclusion R � R�� Then� we can view each modelM� of R� as a
modelM�jR ofR� simply by disregarding the extra sorts� operators� equations�
membership axioms� and rules in R� �R� Since� as explained in Section 	���
the rewrite theories R and R� have respective initial models TR and TR� � by
initiality of TR we always have a unique R�homomorphism h � TR �� TR� jR�

In the models of a rewrite theory the sorts are interpreted as categories� Then�
the protecting importation asserts that for each sort s in the signature � ofR
the function hs is an isomorphism of categories� Intuitively� this means that the
initial model of the supermodule does not add any �junk� or any �confusion�
to the initial model of the submodule� Note that the expected condition would
have been to require h to be an R�isomorphism� However� due to the presence
of error elements at the kind level� the isomorphism condition would be too
strong� since in general� when enlarging a signature� there will be new error
terms that cannot be proved equal to old ones� See ��� for a detailed discussion
of� and proof techniques for� protecting extensions in membership equational
logic�

Of course� the protecting assertion cannot be checked by Maude at runtime�
It requires inductive theorem proving� Using the proof techniques in ��� to�
gether with an inductive theorem prover for membership equational logic and
a Church�Rosser checker such as those described in ��
�� this can be done for
functional modules� and it seems natural to expect that these techniques and
tools will extend to similar ones for rewrite theories�

By contrast� the including assertion does not make such requirements on h�
It does� however� make some requirements� Namely� if the subtheory R does
itself contain a proper subtheory R� that it imports in protecting mode�
then the inclusion R� � R� is still assumed to be protecting� For such an
inclusion to become an including assertion� we have to say so by explicitly
listing the module de�ning R� in the list of modules imported in including

mode�
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��� Theories

Theories are used to declare module interfaces� namely the syntactic and se�
mantic properties to be satis�ed by the actual parameter modules used in an
instantiation� As for modules� Maude supports three di
erent types of theo�
ries� functional theories� system theories� and object�oriented theories� Their
structure is the same as that of their module counterparts�

Theories are rewriting logic theories with a loose interpretation� as opposed
to modules that have an initial semantics� Therefore� theories are allowed
to contain more general sentences that need not satisfy all the requirements
described for modules�

Let us begin by introducing the functional theory TRIV� which requires just a
sort�

fth TRIV is

sort Elt �

endfth

The theory of partially ordered sets with an antire�exive and transitive binary
operator is expressed in the following way� �

fth POSET is

protecting BOOL �

sort Elt �

op ��� � Elt Elt �� Bool �

vars X Y Z � Elt �

eq X � X � false �

ceq X � Z � true if X � Y and Y � Z �

endfth

The theory of totally ordered sets� that is� posets in which all pairs of distinct
elements have to be related� is speci�ed as follows�

fth TOSET is

including POSET �

vars X Y � Elt �

eq X � Y or Y � X or X �� Y � true �

endfth

The including importation of a theory into another theory keeps its loose
semantics� However� if the imported theory contains a module� which therefore

� As with modules� theories implicitly import the prede�ned module BOOL� and
therefore the protecting BOOL declaration is unnecessary�
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must be interpreted with an initial semantics� � then that initial semantics is
maintained by the importation� For example� in the de�nition of the POSET

theory� the declaration protecting BOOL ensures that the initial semantics
of the functional module for the Booleans is preserved� which is in fact a
crucial requirement� This requirement is then preserved by TOSET when POSET

is included�

��� Parameterized Modules

Theories are used to declare the interface requirements for parameterized mod�
ules� Modules can be parameterized by one or more theories� All theories ap�
pearing in the interface must be labelled in such a way that their sorts can
be uniquely identi�ed� The general form for the interface of a parameter�
ized module is �X� �� T�
 � � � 
Xn ��Tn� where X�� � � � � Xn are the labels and
T�� � � � � Tn are the names of the respective parameter theories�

All the sorts coming from theories in the interface must be quali�ed by their
labels� even if there is no ambiguity� If Z is the label of a parameter theory
T � then each sort S in T has to be quali�ed as Z�S �the reason for this will
be explained below�� Moreover� there cannot be subsort overloading between
an operator declared in a theory being used as parameter of a parameterized
module and an operator declared in the body of the parameterized module�
or between operators declared in two parameter theories of the same module�

In the body of a parameterized module M�X� ��T�
 � � � 
Xn �� Tn�� any pa�
rameterized sort S is written in the form S�X�
 � � � 
Xn�� When the module
is instantiated with views V�� � � � � Vn then this sort becomes S�V�
 � � � 
 Vn��
Thus� a simple parameterized module for lists is de�ned as follows�

fmod LIST	X �� TRIV
 is

sort List	X
 �

subsort X�Elt � List	X
 �

op nil � �� List	X
 �ctor� �

op �� � List	X
 List	X
 �� List	X
 �ctor assoc id� nil� �

endfm

The module LIST has only one parameter� In general� as already mentioned�
parameterized modules can have several parameters� It can furthermore hap�
pen that several parameters are declared with the same parameter theory�
Therefore� parameters cannot be treated as normal submodules� since we do
not want them to be shared when their labels are di
erent� We regard the

� In Maude� the importation of a module into a theory is supported only in pro�
tecting mode�
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relationship between the body of a parameterized module and the interface of
its parameters not as an inclusion� but as a module constructor which is eval�
uated generating renamed copies of the parameters� which are then included�
In such copies of parameter theories sorts are renamed as follows� If Z is the
label of a parameter theory T� then each sort S in T is renamed to Z�S� This is
the reason why all occurrences of these sorts in the body of the parameterized
module must mention their corresponding renaming� as explained before�

Let us consider as an example the following module TUPLE���� Notice the use
of the quali�cations for the sorts coming from each of the parameters� and
notice also the form of the sort Tuple�C�
 C���

fmod TUPLE���	C� �� TRIV� C� �� TRIV
 is

sort Tuple	C�� C�
 �

op 		���

 � C��Elt C��Elt �� Tuple	C�� C�
 �ctor� �

op p�� � Tuple	C�� C�
 �� C��Elt �

op p�� � Tuple	C�� C�
 �� C��Elt �

var E� � C��Elt �

var E� � C��Elt �

eq p� 	E�� E�
 � E� �

eq p� 	E�� E�
 � E� �

endfm

In Maude� the module expression TUPLE�n�� for n a nonzero natural number�
generates a parameterized module specifying a tuple of the corresponding
size� For example� for n equal to �� the system generates automatically the
parameterized module TUPLE��� given above�

��� Views

Views are used to assert how a particular target module or theory is claimed to
satisfy a source theory� In general� there may be several ways in which such re�
quirements might be satis�ed� if at all� by the target module or theory� that is�
there can be many di
erent views� each specifying a particular interpretation
of the source theory in the target� Each view declaration has an associated set
of proof obligations� namely� for each axiom in the source theory it should be
the case that the axiom�s translation by the view holds in the target� Since the
target can be a module interpreted initially� verifying such proof obligations
may in general require inductive proof techniques of the style supported for
Maude�s logic in ��
��

All views have to be de�ned explicitly� and all of them must have a name� As
any theory or module� views should have been de�ned before they are used�
In the de�nition of a view we have to indicate its name� the source theory� the
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target module or theory� and the mapping of each sort� operator� class� and
message in the source theory� although it is possible to simplify such mappings
�see ��
���

The following view shows how MACHINE�INT satis�es the theory TRIV�

view Int from TRIV to MACHINE�INT is

sort Elt to MachineInt �

endv

We can also have views between theories� such as the following�

view Toset from TRIV to TOSET is

sort Elt to Elt �

endv

Moreover� views can be parameterized�

view Tuple	X �� TRIV� Y �� TRIV
 from TRIV to TUPLE���	X� Y
 is

sort Elt to Tuple	X� Y
 �

endv

Note that the view Tuple is parameterized by two di
erent instances of the
theory TRIV� Parameterized views of this kind allow us to keep the param�
eter part of the target uninstantiated� The paper �	�� discusses the use of
parameterized theories and views in Maude�

��	 Module Instantiation

Instantiation is the process by which actual parameters are bound to the
parameters of a parameterized module and a new module is created as a
result� This can be seen in fact as the evaluation of a module expression� The
instantiation requires a view from each formal parameter to its corresponding
actual parameter� Each such view is then used to bind the names of sorts�
operators� etc� in the formal parameters to the corresponding sorts� operators
�or expressions�� etc� in the target�

A parameterized module is instantiated with views explicitly de�ned previ�
ously� For example� we can de�ne a module providing �nite lists of pairs�
whose �rst components are machine integers and whose second components are
still parameterized by means of the module expression LIST�Tuple�Int
 X���
which uses the view Int as well as an instance of the parameterized view
Tuple� both de�ned in Section ���� This expression is used in the following
module� which is a general parameterized version of the array representation
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module in Section ��	�

fmod ARRAY	X �� TRIV
 is

protecting LIST	Tuple	Int� X

 �

sorts NeArray	X
 Array	X
 �

subsorts Tuple	Int� X
 � NeArray	X


� Array	X
 � List	Tuple	Int� X

 �

op ���� � NeArray	X
 MachineInt �� �X�Elt� �

op ������� � NeArray	X
 MachineInt X�Elt �� �Array	X
� �

ops low high � NeArray	X
 �� MachineInt �

vars I J � MachineInt �

vars Z Y � X�Elt �

vars L L� � List	Tuple	Int� X

 �

mb nil � Array	X
 �

cmb 	I� Z
 	J� Y
 L � NeArray	X


if 	I � � � J
 �
 	J� Y
 L � NeArray	X
 �

ceq 	L 	I� Z
 L�
�I� � Z if L 	I� Z
 L� � NeArray	X
 �

ceq 	L 	I� Z
 L�
�I �� Y� � 	L 	I� Y
 L�


if L 	I� Z
 L� � NeArray	X
 �

ceq low		I� Z
 L
 � I if 	I� Z
 L � NeArray	X
 �

ceq high	L 	I� Z

 � I if L 	I� Z
 � NeArray	X
 �

endfm

As mentioned in Section ���� we can de�ne views from theories to theories
and can use such views to de�ne new parameterized modules� For example�
we can de�ne a parameterized system module specifying a sorting rule on
arrays whose elements belong to a totally ordered set as follows�

mod SORTING	X �� TOSET
 is

protecting ARRAY	Toset
	X
 �

vars I J � MachineInt �

vars Z Y � X�Elt �

var L � List	Tuple	Int� Toset

	X
 �

crl �sort� � 	I� Z
 L 	J� Y
 �� 	I� Y
 L 	J� Z


if Z � Y �
 	I� Z
 L 	J� Y
 � NeArray	Toset
	X
 �

endm

The module INT�SORTING in Section 	�� can be obtained as the module ex�
pression SORTING�IntAsToset� where

view IntAsToset from TOSET to MACHINE�INT is

sort Elt to MachineInt �

vars X Y � Elt �

op X � Y to term X �� Y and X ��� Y �
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endv

Note that an operator can be mapped to a term� In the IntAsToset view� for
illustration purposes� the 
�
 relation of a toset is mapped to an expression
using the �less than or equal� operator 
��
 and the inequality operator 
���

in MACHINE�INT� instead of using directly the operator 
�
 in MACHINE�INT�

� Re�ection and the META�LEVEL

Informally� a re�ective logic is a logic in which important aspects of its metathe�
ory can be represented at the object level in a consistent way� so that the
object�level representation correctly simulates the relevant metatheoretic as�
pects� In other words� a re�ective logic is a logic which can be faithfully repre�
sented in itself� Maude�s language design and implementation make systematic
use of the fact that rewriting logic is re�ective �������� This makes the metathe�
ory of rewriting logic accessible to the user in a clear and principled way�
However� since a naive implementation of re�ection can be computationally
expensive� a good implementation must provide e�cient ways of performing
re�ective computations� This section explains how this is achieved in Maude
through its prede�ned META�LEVEL module�

	�� Re�ection and Metalevel Computation

Rewriting logic is re�ective in a precise mathematical way� namely� there is a
�nitely presented rewrite theory U that is universal in the sense that we can
represent in U any �nitely presented rewrite theory R �including U itself� as
a term R� any terms t� t� in R as terms t� t�� and any pair �R� t� as a term
hR� ti� in such a way that we have the following equivalence

�y� R � t �� t� � U � hR� ti �� hR� t�i�

Since U is representable in itself� we can achieve a �re�ective tower� with an
arbitrary number of levels of re�ection� because we have

R � t� t� � U � hR� ti � hR� t�i � U � hU � hR� tii � hU � hR� t�ii � � �

In this chain of equivalences we say that the �rst rewriting computation takes
place at level �� the second at level �� and so on� In a naive implementation�
each step up the re�ective tower comes at considerable computational cost�
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because simulating a single step of rewriting at one level involves many rewrit�
ing steps one level up� It is therefore important to have systematic ways of
lowering the levels of re�ective computations as much as possible�so that a
rewriting subcomputation happens at a higher level in the tower only when
this is strictly necessary�

To achieve a systematic descent into equivalent rewriting computations at
lower levels� the key idea is to exploit the equivalence �y�� Detailed proofs of
this equivalence have been given for unsorted unconditional theories ���� and
for unsorted and many�sorted conditional theories ����� The extension to the
case of interest for Maude�namely to conditional rewrite theories with mem�
bership equational logic as the underlying equational logic�although nontriv�
ial� is essentially unproblematic� We therefore assume a universal theory U for
this more general class of �nitely presented rewrite theories� In particular� the
signature �U of U has sorts Term� Module� and Kind� whose respective ele�
ments t � Term� R � Module� and K � Kind represent terms� rewrite theories�
and kinds in a signature� respectively� We assume that there is also an equa�
tionally de�ned Boolean predicate parse � Module
Kind 
Term �� Bool so
that parse�R� K� t� � true if t is an R�term of kind K� and parse�R� K� t� �
false otherwise�

We can exploit the equivalence �y� by introducing the notion of descent func�
tion� that is� a function that� given metalevel representations for a rewrite
theory R and a term t in it� rewrites such a term in R according to a given
strategy and returns the metarepresentation of the resulting term� Such func�
tions can be simply expressed in terms of a general sequential interpreter func�
tion I for rewriting logic� This is a partial function that takes three arguments�
a �nitely presented rewrite theory R� a term t� and a deterministic strategy
S� In case of termination it returns either the term t� to which t was rewritten
according to S� or an error message that is not a term in R� The function is
unde�ned in case the strategy does not terminate� For any �nitely presented
rewrite theory R� terms t� t� in it� and admissible deterministic strategy S� any
such interpreter function must of course satisfy the correctness requirement

��� I�R� t� S� � t� � R � t �� t��

The point is that� regardless of the particular details of I� we can always
equationally axiomatize any such e
ective interpreter function by means of a
Church�Rosser� but in general nonterminating� �nitary equational theory I�
This can be done in a signature that we can assume contains �U as a subsig�
nature� By extending our universal theory U with the new sorts� operators�
and equations of I� we obtain an extended rewrite theory U � I� A descent

function is then a function d � Module 
 Term 
 Parameters �� Term such
that there is a deterministic strategy expression Sd with a single free variable
of sort Parameters satisfying the equality d�R� t� p� � I�R� t� Sd�p���
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Such descent functions are de�nable equationally as de�nitional extensions of
the theory U � I� Note that� since we have only added some new equations�
the only rewrite rules in U � I are exactly those in U � But� given a descent
function d� we can now exploit the equivalence �y� by adding to U�I a descent
rule

d � hM�xi �� hM� yi

if parse�M�K� x� � true � parse�M�K� y� � true � d�M�x� p� � y�

where M � Module� x� y � Term� K � Kind � and p � Parameters� The equiv�
alence �y� can be exploited for e�ciency reasons with such a rule� because
the sequential interpreter I can be a built�in function such as the Maude in�
terpreter� therefore� instantiating M with R� we can use e�cient deduction
in R to perform deduction in U � Let M denote a rewrite theory of the form
M � U � I � D� where D is the addition of several descent functions and of
their associated descent rules� We shall call M a metalevel theory�

The addition of descent rules to U is of course conservative� in the sense of
not adding any rewrites that could not be performed� albeit less e�ciently� in
U itself� since for any descent rule d we have

M� hR� ti
d
�� hR� t�i� I�R� t� Sd�p�� � t�

�
�R � t �� t�

y
�U � hR� ti �� hR� t�i�

Note that� by applying several descent functions� we can descend several levels
in the re�ective tower� that is� a meta�metalevel computation can be e�ciently
carried out at the object level� More generally� we should view descent func�
tions as basic strategies� that can be used as fundamental building blocks to
de�ne internal strategy languages� in which they can be combined with each
other and with more complex strategies at several levels of re�ection to per�
form e�ciently sophisticated metalevel computations �see Section ���

	�� The Module META�LEVEL

In Maude� key functionality of a metalevel theory M with several descent
functions has been e�ciently implemented in a functional module META�LEVEL�
by using as the interpreter function I Maude�s own interpreter� Furthermore�
several other useful functions of the universal theory U are also built�in for

		



e�ciency reasons� In the module META�LEVEL�

� Maude terms are rei�ed as elements of a data type Term of terms�
� Maude modules are rei�ed as terms in a data type Module of modules�
� the processes of reducing a term to normal form in a functional module

and of �nding whether such a normal form has a given sort are rei�ed by a
descent function metaReduce�

� the process of applying a rule of a system module to a subject term is rei�ed
by descent functions metaApply and metaXapply�

� the process of rewriting a term in a system module using Maude�s default
interpreter is rei�ed by a descent function metaRewrite�

� the process of matching a pattern to a subject term is rei�ed by descent
functions metaMatch and metaXmatch� and

� parsing and pretty printing of a term in a module� as well as key sort
operations such as comparing sorts in the subsort ordering of a signature�
are also rei�ed by corresponding metalevel functions�

Sorts and kinds are represented as speci�c subsorts of the sort Qid of quoted
identi�ers� Since operator declarations can use both sorts and kinds� we denote
by Type the union of Sort and Kind�

subsorts Sort Kind � Type � Qid�

subsort Type � TypeList �

	�� Representing Terms

Terms are rei�ed as elements of the data type Term of terms� The basic cases in
the representation of terms are obtained by subsorts Constant and Variable

of the sort Qid� Constants are quoted identi�ers that contain the constant�s
name and its type separated by a ���� e�g�� ���Nat� Similarly� variables contain
their name and type separated by a ���� e�g�� �N�Nat� Appropriate selectors
extract their names and types�

subsorts Constant Variable � Qid �

op getName � Constant �� Qid � op getName � Variable �� Qid �

op getType � Constant �� Type � op getType � Variable �� Type �

Then a term is constructed in the usual way� by applying an operator symbol
to a list of terms�

subsorts Constant Variable � Term �

op ���� � Qid TermList �� Term �ctor� �

subsort Term � TermList �

op ��� � TermList TermList �� TermList �ctor assoc� �
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Since terms in the module META�LEVEL can be metarepresented just as terms
in any other module� the representation of terms can be iterated� For example�
the term s �N�Nat� � � in the module NAT in Section ���� specifying natural
numbers in Peano notation� is metarepresented by

������s���N�Nat�� ���Nat��

and meta�metarepresented by

��������������Qid� ����������������s��Qid� ��N�Nat�Variable��

����Nat�Constant�� �

	�� Representing Modules

Functional and system modules are metarepresented in a syntax very simi�
lar to their original user syntax� The main di
erences are that� ��� terms in
equations� membership axioms� and rules are now metarepresented as we have
already explained in the previous section� ��� in the metarepresentation of
modules we follow a �xed order in introducing the di
erent kinds of declara�
tions for sorts� subsort relations� equations� etc�� whereas in the user syntax
there is considerable �exibility for introducing such di
erent declarations in an
interleaved and piecemeal way� �	� there is no need for variable declarations�
and ��� sets of identi�ers�used in declarations of sorts�are represented as
sets of quoted identi�ers built with an associative and commutative operator

	
�

The syntax for the top�level operators representing functional and system
modules is as follows�

sorts FModule Module �

subsort FModule � Module �

op fmod�is�sorts������endfm � Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet �� FModule �ctor� �

op mod�is�sorts�������endm � Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet RuleSet �� Module �ctor� �

Without going into all the syntactic details� we show only the operators used
to represent conditions� equations� and rules�

sorts EqCondition Condition �

subsort EqCondition � Condition �

ops 	���
 	����
 � Term Term �� EqCondition �ctor� �

op ��� � Term Sort �� EqCondition �ctor� �
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op ���� � Term Term �� Condition �ctor� �

op ��
� � EqCondition EqCondition �� EqCondition �ctor assoc� �

op ��
� � Condition Condition �� Condition �ctor assoc� �

sorts Equation EquationSet �

subsort Equation � EquationSet �

op eq���� � Term Term �� Equation �ctor� �

op ceq���if�� � Term Term EqCondition �� Equation �ctor� �

op none � �� EquationSet �ctor� �

op �� � EquationSet EquationSet �� EquationSet

�ctor assoc comm id� none� �

sorts Rule RuleSet �

subsort Rule � RuleSet �

op rl��������� � Qid Term Term �� Rule �ctor� �

op crl��������if�� � Qid Term Term Condition �� Rule �ctor� �

op none � �� RuleSet �ctor� �

op �� � RuleSet RuleSet �� RuleSet �ctor assoc comm id� none� �

As a simple example� the metarepresentation of the module on the left is the
term displayed on the right� so that the reader can appreciate the similarity
between both notations�

fmod NAT is fmod �NAT is

nil

sorts Zero Nat � sorts �Zero � �Nat �

subsort Zero � Nat � subsort �Zero � �Nat �

op � � �� Zero �ctor� � op �� � nil �� �Zero �ctor� �

op s� � Nat �� Nat �ctor� � op �s� � �Nat �� �Nat �ctor� �

op ��� � Nat Nat �� Nat op ���� � �Nat �Nat �� �Nat

�comm� � �comm� �

vars N M � Nat � none

eq � � N � N � eq ��������Nat� �N�Nat� � �N�Nat �

eq 	s N
 � M � s 	N � M
 � eq ������s���N�Nat�� �M�Nat�

� �s��������N�Nat� �M�Nat�� �

endfm endfm

Since NAT has no list of imported submodules and no membership axioms�
those �elds are �lled� respectively� with the constants nil of sort ImportList�
and none of sort MembAxSet�

Note that terms of sort Module can be metarepresented again� yielding then a
term of sort Term� and this can be iterated an arbitrary number of times� This
is in fact necessary when a metalevel computation has to operate at higher
levels� A good example is the inductive theorem prover described in ��
�� where
modules are metarepresented as terms of sort Module in the inference rules for
induction� but they have to be meta�metarepresented as terms of sort Term
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when used in strategies that control the application of the inductive inference
rules�

	�	 Descent Functions

The module META�LEVEL has several built�in descent functions that provide
useful and e�cient ways of reducing metalevel computations to object�level
ones�

The operation metaReduce takes as arguments the representation of a module
R and the representation of a term t in that module�

op metaReduce � Module Term �� �ResultPair� �

op ����� � Term Type �� ResultPair �ctor� �

It returns the representation of the fully reduced form of the term t using the
equations in R� together with its corresponding sort or kind�

The interpreter function for metaReduce�R� t� rewrites the term t to normal
form using only the equations in R� and does so according to the operator
evaluation strategies �see the end of Section ��� and �		�� declared for each
operator in the signature of R� which by default is bottom�up for operators
with no such strategies declared� In other words� the interpreter strategy for
this function coincides with that of the reduce command in Maude� that is�

metaReduce�R� t� � IMaude�R� t� reduce��

The operation metaRewrite has syntax

op metaRewrite � Module Term MachineInt �� �ResultPair� �

It is entirely analogous to metaReduce� but instead of using only the equa�
tional part of a module it now uses both the equations and the rules to rewrite
the term using Maude�s default strategy� Its �rst two arguments are the repre�
sentations of a module R and of a term t� and its third argument is a natural
number n� Its result is the representation of the term obtained from t after
at most n applications of the rules in R using the strategy of Maude�s de�
fault interpreter� which applies the rules in a top�down rule fair way� When
the value � is given as the third argument� no bound is given to the number
of rewrites� and rewriting proceeds to the bitter end� Again� metaRewrite is
a paradigmatic example of a descent function� its corresponding interpreter
strategy is that of the rewrite command in Maude� that is�

metaRewrite�R� t� n� � IMaude�R� t� rewrite �n���

	




The operation metaApply has syntax�

op metaApply � Module Term Qid Substitution MachineInt

�� �ResultTriple� �

The �rst four arguments are representations in META�LEVEL of a module R� a
term t in R� a label l of some rules in R� and a set of assignments �possibly
empty� de�ning a partial substitution � for the variables in those rules� The
last argument is a natural number n used to enumerate all possible matches
�due to the presence of structural axioms for operators or several rules with the
same label l�� metaApply then returns a triple of sort ResultTriple consisting
of a term� with the corresponding sort or kind� and a substitution� The syntax
for substitutions and for results is

subsort Assignment � Substitution �

op ���� � Qid Term �� Assignment �ctor� �

op none � �� Substitution �ctor� �

op ��� � Substitution Substitution �� Substitution

�ctor assoc comm id� none� �

op ������� � Term Type Substitution �� ResultTriple �ctor� �

The operation metaApply is evaluated as follows�

��� the term t is �rst fully reduced using the equations in R�
��� the resulting term is matched against all rules with label l partially in�

stantiated with �� with matches that fail to satisfy the condition of their
rule discarded�

�	� the �rst n successful matches are discarded� if there is an �n���th match�
its rule is applied using that match and the steps � and � below are taken�
otherwise an error is returned�

��� the term resulting from applying the given rule with the �n���th match
is fully reduced using the equations in R�

��� the triple formed using the constructor �




� whose �rst element is the
representation of the resulting fully reduced term� whose second element
is the representation of the corresponding type� and whose third element
is the representation of the match used in the reduction is returned�

The interpreter strategy associated to metaApply�R� t� l� �� n� is not that of a
user�level command in the Maude interpreter� It is instead a built�in strategy
internal to the interpreter that attempts one rewrite at the top as explained
above�

The operation metaXapply� with syntax

op metaXapply � Module Term Qid Substitution MachineInt MachineInt

MachineInt �� �Result�Tuple� �

op ��������� � Term Type Substitution Context �� Result�Tuple �ctor� �
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works as metaApply but using matching with extension �see ���� Section �����
and in any possible position� not only at the top� The �rst two integer argu�
ments indicate� respectively� the minimum and maximum depth in the �at�
tened term �with respect to its associative or associative�commutative opera�
tors� where the application of the rule can take place� The last integer argu�
ment enumerates the solutions� since there can be di
erent such rewrites with
di
erent substitutions and at di
erent positions� The result has an additional
component� giving the context inside the given term� where the rewriting has
taken place� Contexts �terms with a single �hole�� are de�ned as follows� 	

subsort Context � CTermList �

subsorts TermList CTermList � GTermList �

op �� � �� Context �ctor� �

op ��� � TermList CTermList �� CTermList �ctor assoc� �

op ��� � CTermList TermList �� CTermList �ctor assoc� �

op ���� � Qid CTermList �� Context �ctor� �

The function metaMatch intuitively tries to match at the top two given terms
in a module� The last argument is used to enumerate possible matches� If
the matching attempt is successful� the result is the corresponding substitu�
tion� The generalization to metaXmatch is analogous to the generalization to
metaXapply�

op metaMatch � Module Term Term MachineInt �� �Substitution� �

op metaXmatch � Module Term Term MachineInt MachineInt

MachineInt �� �MatchPair� �

op ����� � Substitution Context �� MatchPair �ctor� �

	�
 Parsing� Pretty Printing� and Sort Functions

Besides the descent functions already discussed� META�LEVEL provides several
other functions that naturally belong to the universal theory and could have
been equationally axiomatized in such a theory� However� for e�ciency reasons
they are provided as built�in functions� These functions allow parsing and
pretty printing a term in a module at the metalevel� and performing e�ciently
a number of useful operations on the sorts declared in a module�s signature�

The function metaParse takes as arguments the representation of a module�
the representation of a list of tokens as a list of quoted identi�ers� and� op�
tionally� a sort or kind� It returns the metarepresentation of the parsed term

	 Sort CTermList represents lists of terms with exactly a �hole� in the whole list�
and sort GTermList is only needed for the assoc attribute� which is necessary� to
make sense�
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of that list of tokens for the signature of the module� which is assumed to be
unambiguous�

The function metaPrettyPrint takes as arguments the representation of a
module M and the representation of a term t� It returns a list of quoted
identi�ers that encode the string of tokens produced by pretty printing t in
the syntax given by M � In the event of an error an empty list is returned�

The operations on sorts provide commonly needed functions on the poset of
sorts of a module in a built�in way at the metalevel� For example� the function
leastSort takes as arguments the representations of a module and a term and
computes the �representation of the� least sort of that term in the module�
while the Boolean expression sameKind�M
s
s�� is true if and only if the
sorts s and s� belong to the same kind in the module M �

	�� Extensions of META�LEVEL

In metalevel computations it is very convenient to be able to refer by name to
the metarepresentations of modules already entered into the system� To make
this possible� Maude allows importation declarations of the form

protecting META�LEVEL�M�� � � � �Mn� �

where M�� � � � �Mn is a list of names of user�de�ned modules� With this dec�
laration� new constants M�� � � � �Mn of sort Module are declared� and new
equations making each constant Mi equal to the metalevel representation of
the module with name Mi �declared previously by the user� are added� for
i � � � � � n� Thus� after entering the module NAT in Section ��� above� we can
declare a module that protects META�LEVEL�NAT� and de�nes a function to
extract the set of operator declarations of a functional module as follows�

fmod META�NAT is

protecting META�LEVEL	NAT
 �

op getOpDeclSet � FModule �� OpDeclSet �

var QI � Qid � var IL � ImportList �

var SS � QidSet � var SSDS � SubsortDeclSet �

var ODS � OpDeclSet � var MAS � MembAxSet �

var EqS � EquationSet �

eq getOpDeclSet	fmod QI is IL sorts SS � SSDS ODS MAS EqS endfm


� ODS �

endfm

Then we can apply this function to the constant NAT� which in META�NAT has
been declared to be equal to the metarepresentation of the user�de�ned module
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NAT� as follows�

Maude� red getOpDeclSet	NAT
 �

Result OpDeclSet �

op �� � nil �� �Zero �ctor� �

op �s� � �Nat �� �Nat �ctor� �

op ���� � �Nat �Nat �� �Nat �comm� �

In Maude� we can use the up function to avoid the cumbersome task of explic�
itly writing the metarepresentation of a term or of a module� For example� to
obtain the metarepresentation of the term s � in the module NAT� mathemat�
ically denoted s �� we can write

Maude� red up	NAT� s �
 �

Result Term � �s�����Nat�

Note that the module name is the �rst argument of the up function� with the
term of that module to be metarepresented as the second argument� Since the
same term can be parsed in di
erent ways in di
erent modules� and therefore
can have di
erent metarepresentations depending on the module in which it
is considered� the module to which the term belongs has to be used to obtain
the correct metarepresentation� Note also that the above reduction only makes
sense at the metalevel� that is� in a module importing the module META�LEVEL�
Moreover� by evaluating in any module importing the module META�LEVEL the
up function with the name of any previously declared module as argument�
we obtain the metarepresentation of such a module�

The result of a metalevel computation that may use several levels of re�ection
can be a term or module metarepresented one or more times� which may be
hard to read� To display the output in a more readable form we can use the
down command� which is in a sense inverse to up� since it gives us back the
term from its metarepresentation� The down command takes two arguments�
The �rst argument is the name of the module to which the term to be re�
turned belongs� The metarepresentation of the desired output term should be
the result of the command given as second argument� Thus� we can give the
following command�

Maude� down NAT �

red�in META�NAT � metaReduce	NAT� up	NAT� � � s �

 �

Result Nat � s �

The use of up and down can be iterated with as many levels of re�ection as
we wish�
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� Internal Strategies

As already explained� system modules in Maude are rewrite theories that do
not need to be Church�Rosser and terminating� Therefore� we need to have
good ways of controlling the rewriting inference process�which in principle
could not terminate or could go in many undesired directions�by means of
adequate strategies� This need has been addressed in other languages� for ex�
ample� the ELAN language provides a strategy language to guide the rewrites
and allows user extensions for such a language �������� In Maude� thanks to
its re�ective capabilities� strategies are made internal to the logic� that is�
they are de�ned by rewrite rules in a normal module in Maude� and can be
reasoned about as with rules in any other module�

In fact� there is great freedom for de�ning many di
erent types of strategies�
or even many di
erent strategy languages inside Maude� This can be done
in a completely user�de�nable way� so that users are not limited by a �xed
and closed particular strategy language� A general methodology for de�ning
internal strategy languages for re�ective logics is introduced in ����� In general�
strategies for controlling the application of the rules are de�ned by using
metaReduce� metaApply� etc�� as building blocks� which are then combined to
obtain more complex strategies�

Let us illustrate some of the possibilities with some strategies controlling the
execution of the rule labelled switch in the following module SWITCH� 


mod SWITCH is

protecting ARRAY	Int
 �

vars I J X Y � MachineInt �

var L � List	Tuple	Int� Int

 �

crl �switch� � 	I� X
 L 	J� Y
 �� 	I� Y
 L 	J� X


if 	I� X
 L 	J� Y
 � NeArray	Int
 �

endm

The switch rule rewrites a term of sort Array�Int� in the module ARRAY�Int�
to another term in which two of the elements in it have been interchanged�
Note that the condition in the rule ensures that it is only applied to valid
integer arrays� resulting in another valid integer array� however� this rule is
di
erent from the rule sort in Sections 	�� and ���� because it does not check
whether the elements are out of place or not�


 The reader should compare this module with the modules INT�SORTING in Sec�
tion ��	 and SORTING	X �� TOSET
 in Section ���� In particular� the imported
module ARRAY	Int
 is obtained as an instantiation of the parameterized module
ARRAY	X
 in Section ���� and is equivalent to the module INT�ARRAY discussed in
Section 	���
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The system thus described is highly concurrent� because the switch rule may
be applied concurrently to many di
erent positions in an array� Moreover�
this rule gives rise to nondeterministic and nonterminating computations� and
therefore we need to control by means of strategies the way in which it is
applied�

Let us begin by illustrating the use of metaApply for rewriting a term of sort
Array�Int� by applying the rule switch once at the top of the term with�
out any speci�c substitution �argument none representing the empty substi�
tution� and using the �rst possible match �last argument ��� The operation
getTerm is the selector extracting the �rst component from either a pair of
sort ResultPair or a triple of sort ResultTriple �see Section �����

Maude� red getTerm	metaApply	SWITCH�

	�� �
	�� �
	�� �
� �switch� none� �

 �

result Term � 	�� �
	�� �
	�� �


This simple application of the rule does not have much interest by itself� but
shows how it can be used for building more interesting strategies� For example�
in this case we see how an array can be rewritten in several di
erent ways�
even considering a single rule and rewriting only at the top of the term� The
function findAllRews in the module ALL�ONE�STEP�REWRITES below �nds
all possible one�step rewrites of a term using a given rule� More precisely�
findAllRews�M
T
L�� with M a term of sort Module� T a term of sort
Term metarepresenting a term of a sort in the module metarepresented by M �
and L the label of a rule in M � returns the set of terms resulting from the
application of the rule L in all possible di
erent ways on term T in M by
using metaXapply� ��

fmod SET	X �� TRIV
 is

sort Set	X
 �

subsort X�Elt � Set	X
 �

op mt � �� Set	X
 �ctor� �

op ��� � Set	X
 Set	X
 �� Set	X
 �ctor assoc comm id� mt� �

var E � X�Elt �

eq E � E � E �

endfm

view Term from TRIV to META�LEVEL is

sort Elt to Term �

endv

�� The constant maxMachineInt is the largest integer in a given Maude imple�
mentation� It is guaranteed �due to virtual memory�address space limitations�
that in a nondistributed implementation of Maude a term of depth greater than
maxMachineInt cannot be built without running out of swap space�
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fmod ALL�ONE�STEP�REWRITES is

protecting SET	Term
 �

op findAllRews � Module Term Qid �� Set	Term
 �

op findAllRewsAux � Module Term Qid MachineInt �� Set	Term
 �

var T � Term � var M � Module �

var L � Qid � var N � MachineInt �

eq findAllRews	M� T� L
 � findAllRewsAux	M� T� L� �
 �

eq findAllRewsAux	M� T� L� N


� if metaXapply	M� T� L� none� �� maxMachineInt� N


�� Result�Tuple

then getTerm	metaXapply	M� T� L� none� �� maxMachineInt� N



� findAllRewsAux	M� T� L� N � �


else mt

fi �

endfm

A call to function findAllRews with the metarepresentations of the SWITCH

module� of an array� and of the rule label switch gives back all the terms
resulting from the application of such a rule in all possible ways on the term�

Maude� red findAllRews	SWITCH� 	�� �
	�� �
	�� �
� switch
 �

result Set	Term
 �

	�� �
	�� �
	�� �
 � 	�� �
	�� �
	�� �
 � 	�� �
	�� �
	�� �


It is easy to extend this speci�cation in order to get not only the one�step
rewrites� but also to get all rewrites� perhaps up to a given depth� and not
only by the application of a single rule� but by considering any rule in a given
module� We can even carry on some kind of model checking analysis� This is
precisely the idea used by Denker� Meseguer� and Talcott in ���� for analyzing
di
erent communication protocols by means of exhaustive execution strategies
that achieve a form of model checking analysis of the state space�

Another way of controlling the application of the rules consists in choosing
some of the possible rewriting paths that can be followed by the application
of the rules to a term� For example� we can consider di
erent strategies for
the controlled application of the rule switch above for sorting integer arrays�
In this case� such strategies correspond to the speci�cation of di
erent sorting
algorithms guiding where the switch rule should be applied at each point of
the computation�

In the module INSERT�STRATEGY below� we give a strategy for sorting integer
arrays by following the insertion sort algorithm� This strategy consists in par�
titioning the array in two regions� a �rst part which is sorted� and a second
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one which is unsorted� Initially� the entire array is unsorted� and� at each step�
the strategy takes the �rst element of the unsorted part and places it into its
correct position in the sorted region� This insertion requires the shifting of
elements to make room for the element being inserted�

The function insert takes a term metarepresenting the nonempty array to
be sorted� and calls an auxiliary function� named insertAux� which takes in
addition the positions of the �rst and last elements of the array� Its second
and third arguments are indexes used to refer to particular elements in the
array� More precisely� the second argument represents the position of the �rst
element in the unsorted region� that is� the element to be inserted next� and
the third argument is used to go through the sorted region looking for the
correct position for such an item�

The function metaReduce is used for reducing several expressions at the met�
alevel� For example� the term T being rewritten is used in insert for computing
the range of the positions of the array� which are passed as arguments in the
initial call to the insertAux function� or for evaluating the Boolean condition
in which two elements in di
erent positions are compared in order to decide
whether it is worth to interchange them or not�

Note the form of the arguments of metaReduce in these calls� We use a com�
bination of the overline notation with the actual metarepresentation of a term
in order to simplify the text of the speci�cation as much as possible� For ex�
ample� the term � � ��low�T�
 �� is a simpli�ed representation of the term
�
�
��low�T�
 ���MachineInt�� where T is a variable of sort Term with value
the metarepresentation of an array� Such a term is the metarepresentation of
low�A� � �� with A the array metarepresented by T� which is used for calcu�
lating the successor of the �rst position of the array being sorted�

The function metaXapply is called with an explicit substitution as its fourth
argument in order to appropriately instantiate the variables I and J used in
the switch rule� corresponding to the positions whose values must be inter�
changed�

fmod INSERT�STRATEGY is

protecting META�LEVEL	SWITCH
 �

op insert � Term �� Term �

op insertAux � Term Term Term Term Term �� Term �

vars T K� K� L H � Term �

eq insert	T


� insertAux	T� ������low�T�� ��� ������low�T�� ���

�low�T�� �high�T�
 �

��



eq insertAux	T� K�� K�� L� H


� if getTerm	metaReduce	SWITCH� �����K�� L�

 �� true

then if getTerm	

metaReduce	SWITCH�

�������������T� �����K�� ���� ��������T� K���



��� true

then insertAux	T� K�� �����K�� ��� L� H


else insertAux	

getTerm	

metaXapply	SWITCH� T� �switch�

		�J�MachineInt ��

getTerm	metaReduce	SWITCH� K�


�

	�I�MachineInt ��

getTerm	metaReduce	SWITCH� �����K�� ��



�

�� maxMachineInt� �

�

K�� �����K�� ��� L� H


fi

else if getTerm	metaReduce	SWITCH� �����K�� H�

 �� true

then insertAux	T� �����K�� ��� �����K�� ��� L� H


else T

fi

fi �

endfm

Notice that� although the rule switch in module SWITCH gives rise to non�
deterministic and nonterminating computations� its controlled application by
means of the strategy insert in the module INSERT�STRATEGY is deterministic
and terminating�

Maude� red insert		���
	���
	���
	���
	���

 �

result Term � 	���
	���
	���
	���
	���


We can specify other sorting algorithms following the same approach� For ex�
ample� the module QUICKSORT�STRATEGY in Appendix A�� de�nes the strategy
function quicksort following the classical quicksort algorithm� Given a func�
tion partition� which partitions the array in those elements smaller than a
chosen pivot and those greater than or equal to the pivot� the quicksort al�
gorithm consists in calling partition with the fragment of the array being
considered at that point� and then making recursive calls to itself with each
of the fragments in which the selected pivot has divided the array�
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� Implementation

The Maude system is built around the Core Maude interpreter� which accepts
module hierarchies of �unparameterized� functional and system modules with
user�de�nable mix�x syntax� It is implemented in C�� and consists of two
parts� the rewrite engine �Section 
��� and the mix�x front end �Section 
����
Two additional key components are the MSCP parser �Section 
�	� and the
Full Maude language extension built on top of the Core Maude interpreter
�Section 
����

��� The Rewrite Engine

The design of Maude�s rewrite engine has a number of objectives� Speci�cally
it should�

� look and feel like an interpreter�
� be capable of supporting user interrupts and source level tracing�
� be extensible with new equational theories and new built�in operators�
� be general purpose and not contain Maude�speci�c code or features�

The �rst three objectives all but rule out a number of performance enhancing
techniques such as�

� compilation to native machine code �or C C����
� compilation to a �xed architecture abstract machine�
� program transformations and partial evaluation� and
� tight coupling between the matching replacement normalization code for

di
erent equational theories�

The design chosen is essentially a highly modular semicompiler where the
most time consuming run�time tasks are compiled into a system of decision
diagrams and automata which are interpreted at run time� It is realized as a
C�� class library�

To enhance maintainability and extensibility� the rewrite engine is highly
structured� with its classes being grouped into ten modules which themselves
are organized into four layers� with inner layers having no knowledge of� or
dependency on� classes in outer layers� The overall architecture is shown in
Figure �� where the arrows represent class derivation�

Layer � consists of a single module Utility� containing classes and class tem�
plates which provide a number of general�purpose data types such as vectors�
maps� sets� graphs� and digraphs� together with some more specialized data
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Fig� 	� Architecture of Maude�s rewrite engine

types such as Diophantine equations and Tarjan�s union��nd data structure�

Layer � Consists of three modules� The Theory Interface module provides
abstract interfaces to basic objects whose concrete realization will di
er for
di
erent equational theories such as� symbols� term and DAG nodes� lefthand
side automata �for matching�� righthand side automata �for constructing and
normalizing righthand side and condition instances�� matching subproblems�
and matching extension information� The Core module contains classes for
basic objects that are independent of the di
erent equational theories such as�
sorts� connected sort components� equations� membership axioms� rules� con�
junctions and disjunctions of matching subproblems� and substitutions� The
Variable module contains classes derived from those in the Theory Interface�
Variables are treated as a very special equational theory in that classes in
most other modules are permitted to know about and depend on their special
properties�

Layer 	 consists of modules that implement particular equational theories�
Each consists of classes derived from those in the Theory Interface� Currently
there are �ve such modules� The Free Theory module implements the free
theory whose operators have no equational attributes� this is the only theory
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that currently supports many�to�one matching via discrimination nets� The
ACU Theory module implements the associative�commutative and associative�
commutative�identity theories� The AU Theory module implements the theo�
ries that contain associativity and possibly left and or right identity� The CUI
Theory module implements all theories that are formed by nonempty combi�
nations of commutativity� left identity� right identity� and idempotence� The
purpose of the NA Theory is to provide a convenient interface for plugging
in data types such as machine integers� strings� and �oating point numbers
which have special machine level representations for performance reasons�

Layer � consists of a single module Builtin which contains classes for symbols
with special built�in semantics� and for term and DAG nodes which have
special internal representations� In keeping with our objective of having a
general�purpose rewrite engine� this module provides operators and data types
that are of general use in rewriting logic such as equality� sort tests� machine
integers� strings� and �oating point numbers�

����� Performance

Although our design emphasizes generality� transparency� extensibility� and
maintainability� performance is not neglected� At the time of writing� typical
equational rewriting speeds are ���������M free�theory rewrites second and
�	�	��K AC rewrites per second on a highend Linux PC ���
MHz Xeon with
���MB �		MHz SDRAM�� The �gure for AC rewriting is highly dependent
on the complexity of the AC patterns �AC matching is NP�complete� and
the size of the AC subjects� These results were obtained using fairly simple
linear and nonlinear patterns and large �hundreds of nested AC operators�
subjects� In mixed free AC systems we have obtained speeds of more than �M
rewrites second�

Performance enhancing techniques used in the implementation include�

� Fixed size DAG nodes for in�place replacement�
� Full indexing for the topmost free function symbol layer of patterns� where

the patterns for some free symbol only contain free symbols this is equivalent
to matching a subject against all the patterns simultaneously�

� Use of greedy matching algorithms which attempt to generate a single match�
ing substitution as fast as possible for patterns and subpatterns that are
simple enough and whose variables satisfy certain requirements �such as
not appearing in a condition�� If a greedy matching algorithm fails it may
be able to report that no match exists� but it is also allowed to report
!undecided�� in which case the full matching algorithm must be used�

� Use of special�purpose matching automata to catch common subpatterns
and handle them in a particularly e�cient way�
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� Use of a carefully�chosen normal form for the AC�U� theory� together with
sophisticated renormalization algorithms that make use of extra informa�
tion saved by the matcher to avoid costly comparisons and sorting where
possible�

� Use of a Boyer�Moore style algorithm for matching under A�U� function
symbols�

� Parse time analysis of sort information to avoid needless searching during
A�U� and AC�U� matching�

� Parse time analysis of non�linear variables in patterns in order to propagate
constraints on those variables in an !optimal� way and reduce the search
space�

� Global sort analysis to avoid unnecessary sort computations and tests�
� Compilation of sort information into ordered decision diagrams for fast in�

cremental computation of sorts at run time�
� E�cient handling of matching with extension through a theory independent

mechanism that avoids the need for extension variables or equations�

��� The Mix�x Frontend

The mix�x frontend contains all of the Maude�speci�c code in the system� It
contains�

� A bison �ex�based parser for Maude�s surface syntax�
� A grammar generator which generates the context�free grammar �CFG� for

the mix�x parts of Maude over the user�s signature�
� The MSCP parser for ��extended CFGs �discussed in Section 
�	 below��
� A mix�x pretty printer which is aware of precedences� gather patterns� and

various kinds of overloading�
� A module system with lazy �attening and lazy reparsing �for when a module

with dependents is replaced��
� A fully reentrant debugger�
� Maude�speci�c built�in data types� such as those in the QID and META�LEVEL

modules�
� File� directory� and line number management�

��� The MSCP Parser

The intrinsic characteristics of Maude�mainly� its metalanguage functional�
ity� its re�ective nature� and its logical and semantic framework applications�
pose very strong requirements on the design of a parsing algorithm for the

��



language� since it has to ful�ll the following constraints �����

� Interpreted parsing is required� since the syntax of modules is user�de�nable�
� Full context�free grammars must be used� and not only LALR models�
� A disambiguation mechanism� as the use of precedence values and gathering

patterns� that modify the grammatical power of nonterminal symbols� must
be available�

� Grammars are extended to incorporate bubbles ����� Bubbles are the key
notion to implement syntactic re�ection� Furthermore� bubble sorts are user�
de�nable�

� Techniques for error detection and error recovery must be supported�
� E�ciency is a main goal� as the parser is the surface of the rest of the

system� especially in metalevel computations�

The logical kernel of the current version of the parser is based on the SCP
parsing algorithm ����� SCP is a bidirectional� bottom�up and event�driven
parser for unrestricted context�free grammars� The soundness and complete�
ness of SCP guarantees that the Maude version of SCP �MSCP� will generate
all the possible grammatical analyses for each term in a given signature� This
avoids some completeness problems detected in the OBJ	 parser�

MSCP is able to analyze ��extended CFGs �CFGs extended with bubbles and
precedence gathering patterns� ����� The MSCP parsing algorithm incorpo�
rates sophisticated error detection and error recovery mechanisms based on
the notions of partial derivability and adjacency� originally developed in SCP�

��� Full Maude

The full syntax of Maude explained and illustrated in this paper is not directly
supported by the Core Maude interpreter� Instead� it is supported by a sys�
tem extension called Full Maude �	���
� that is entirely written in Maude and
makes crucial use of Maude�s re�ective capabilities� Speci�cally� all object�
oriented features� as well as all parameterized modules� theories� views� and
module expressions are supported in Full Maude� Essentially� Full Maude pro�
vides a rich and extensible module algebra of parameterized modules and mod�
ule composition in the Clear OBJ style with important extensions to support
object�oriented modules� The key idea of its re�ective design is to extend the
sort Module in META�LEVEL with new sorts corresponding to more general
kinds of modules and other constructs such as object�oriented modules� pa�
rameterized modules� theories� views� and so on� Then� all operations in the
module algebra are de�ned by equations and rewrite rules at the metelevel�

As mentioned above� all of Full Maude�including its grammar� user inter�
face� and internal functionality�has been formally speci�ed in Maude using

��



re�ection� This formal speci�cation is in fact its implementation� Our expe�
rience in this regard is very encouraging in several respects� Firstly� because
of how quickly it was possible to develop Full Maude� Secondly� because of
how easy it will be to maintain it� modify it� and extend it with new features
and new module operations ����� Thirdly� because of the competitive perfor�
mance with which it can carry out complex module composition and module
transformation operations� that makes the user interaction quite reasonable�

� Methodology	 Tools	 Applications	 and Future

We �rst explain how Maude� together with an environment of formal analysis
and reasoning tools� can support a �exible range of formal methods� Then�
after giving a brief summary of the di
erent kinds of applications developed
so far� we describe some near�future development concerning Mobile Maude�


�� Formal Methodology and Tools

The fact that rewriting logic speci�cations are executable allows us to have
a �exible range of increasingly stronger formal methods� to which a system
speci�cation can be subjected� including the following�

��� Formal speci�cation� This process results in a �rst formal model of the
system� in which many ambiguities and hidden assumptions present in an
informal speci�cation are clari�ed� A rewriting logic speci�cation provides
a formal model in exactly this sense�

��� Execution of the speci�cation� Executable rewriting logic speci�cations
can be used directly for simulation and debugging purposes� leading to
increasingly better designs�

�	� Model�checking analysis� Errors in highly distributed and nondetermin�
istic systems not revealed by a particular execution can be found by a
model�checking analysis that considers all behaviors of a system from an
initial state� up to some level or condition�

��� Narrowing analysis� By using symbolic expressions with logical variables�
one can carry out a symbolic model�checking analysis in which all behav�
iors not only from a single initial state� but also from the possibly in�nite
set of states described by a symbolic expression are analyzed�

��� Formal proof� For highly critical properties it is also possible to carry out
a formal proof of correctness� which can be assisted by formal tools such
as those described below� Such properties can be expressed in rewriting
logic itself� or in an adequate modal or temporal logic�

��



The above methodology can be supported by formal tools� First of all� Maude
itself is a very versatile formal tool supporting methods ��� through its default
interpreter� and method 	 through re�ective rewriting strategies that can an�
alyze the di
erent concurrent computations from a given initial state checking
for desired properties� Method�s � narrowing analysis can be supported by
strategies and a rewriting speci�cation of uni�cation� but in the future it will
be more e�cient to support uni�cation in a built�in way�

In addition to the formal methods directly supported by Maude� one can
use Maude as a formal metatool ���� to build other formal tools supporting
other kinds of analysis and proof� As explained in ��
�������� re�ection and
the �exible uses of rewriting logic as a logical framework ���� are the key
features making it easy to develop such formal tools and their user interfaces�
The papers �����
� give detailed accounts of a wide range of formal tools
that have been de�ned in Maude by di
erent authors for di
erent formalisms�
We focus here on Maude�speci�c tools� applicable to large classes of Maude
speci�cations� or extensions of such speci�cations� they include the following�

An Inductive Theorem Prover
 Using the re�ective features of Maude�
we have built an inductive theorem prover for equational logic speci�ca�
tions ��
� that can be used to prove inductive properties of both CafeOBJ
speci�cations ��	� and of functional modules in Maude� This tool can be
extended with re�ective reasoning principles to reason about the metalogi�
cal properties of a logic represented in rewriting logic or� more generally� to
prove metalevel properties ����

A Church�Rosser Checker
 We have also built a Church�Rosser checker
tool ��
� that analyzes equational speci�cations to check whether they sat�
isfy the Church�Rosser property� This tool can be used to analyze order�
sorted equational speci�cations �	�� in CafeOBJ and in Maude� The tool
outputs a collection of proof obligations that can be used to either modify
the speci�cation or to prove them� Extensions of this tool to perform equa�
tional completion and to check coherence of rewrite theories are currently
under development�

Real�Time Maude
 Based on a notion of real�time rewrite theory that can
naturally represent many existing models of real�time and hybrid systems�
and that has a straightforward translation into an ordinary rewrite theory
�������� "Olveczky and Meseguer have developed an execution and analysis
environment for speci�cations of real�time and hybrid systems called Real�
Time Maude ��
�� This tool translates real�time rewrite theories into Maude
modules and can execute and analyze such theories by means of a library
of strategies that can be easily extended by the user to perform other kinds
of formal analysis�

�	




�� Applications

In general� the applications of Maude exploit the good features of rewriting
logic as a semantic framework and as a logical framework� Often� they use
in a crucial way Maude�s re�ective capabilities� A detailed discussion of dif�
ferent applications is beyond the scope of this paper� we refer the reader to
��
���������������� for recent accounts� As already explained in Section ���� an
important class of logical framework applications are formal metatool applica�
tions that use Maude to generate other formal tools ����� Semantic framework
applications span a wide range of levels� including� formal speci�cation of
architectural description languages� object�oriented designs� and distributed
middleware �������� formal speci�cation and analysis of network systems and
communication protocols �������� and speci�cation and programming of agent
and mobile systems �see ������� and Section ��	�� Of course� given the high
performance of the implementation� Maude is also an attractive very high�level
language for a number of programming applications� As explained below� we
expect Mobile Maude to further extend the range of such applications�


�� Mobile Maude

Maude can be used not only for specifying communication systems� but also for
programming them� We are currently advancing the design of Mobile Maude
����� This is an extension of Maude supporting mobile computation that uses
re�ection in a systematic way to obtain a simple and general declarative mo�
bile language design� The two key notions are processes and mobile objects�
Processes are located computational environments where mobile objects can
reside� Mobile objects can move between di
erent process in di
erent loca�
tions� and can communicate asynchronously with each other by means of
messages� Each mobile object contains its own code�that is a rewrite the�
ory R�metarepresented as a term R� In this way� re�ection endows mobile
objects with powerful �higher�order� capabilities within a simple �rst�order
framework�

We expect that Mobile Maude will have good support for secure mobile com�
putation for two reasons� Firstly� mobile objects will communicate with each
other and will move from one location to another using state�of�the�art en�
cryption mechanisms� Secondly� because of the logical basis of Mobile Maude�
we expect to be able to prove critical properties of applications developed in it
with much less e
ort than what it would be required if the same applications
were developed in a conventional language such as Java�
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� Maude Versions
 Past	 Present	 and Future

As explained in the introduction� this paper has presented all the main Maude
concepts in a version�independent way� without pointing out for each language
feature in which version it was introduced� Table � summarizes this informa�
tion� and also distinguishes at the same time between the Core Maude features�
and the additional features provided in Full Maude�

Version � of Maude was released in January ����� while Version � was designed
in the summer of ����� most of its features are already implemented at the
time of writing� The last row in the table summarizes several features that
have been discussed as desirable for future versions� but that are not going to
be part of the release of Version � of Maude�

A More details of some examples

A�� CCS Syntax

fmod ACTION is

protecting QID �

sorts Label Act �

subsorts Qid � Label � Act �

op tau � �� Act �ctor� � ��� silent action

op �� � Label �� Label �ctor� �

var N � Label �

eq � � N � N �

endfm

fmod PROCESS is

protecting ACTION �

sorts ProcessId Process �

subsorts Qid � ProcessId � Process �

op � � �� Process �ctor� �

��� inaction

op ��� � Act Process �� Process �ctor� �

��� prefix

op ��� � Process Process �� Process �ctor assoc comm� �

��� summation

op ��� � Process Process �� Process �ctor assoc comm� �

��� parallel composition

op �
� � Process Label �� Process �ctor� �

��� restriction

op ������ � Process Label Label �� Process �ctor� �

��



Core Maude Full Maude

functional modules object�oriented modules

system modules parameterized modules

conditions� single equation theories

module hierarchies views

Version re�ection �metalevel� module renaming

� internal strategies tuples

descent functions

���
��
metaReduce
metaRewrite
metaApply

up�down commands

prede�ned data types

���
��
Boolean values
quoted identi�ers
machine integers

explicit use of kinds parameterized theories

new variable syntax parameterized views

general conditions

�����
����

memberships
equations
matching equations
rewrites

view composition

more descent functions

���
��
metaXapply
metaMatch
metaXmatch

view lifting

Version

�

more prede�ned
data types

���
��
natural numbers
�oating point numbers
strings

built�in object�oriented modules� including
TCP socket and �le system interfaces

fair rewriting for system and
object�oriented modules

rewrite search and LTL model�checking

sublanguage compiler

LATEX pretty printing

uni�cation

narrowing

built�in strategy language

Future foreign language interface

user�de�nable lexical syntax

GUI support

additional operator attributes

additional compiler support

Table �
Language Features
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��� relabelling� �b�a� relabels �a� to �b�

endfm

fmod CCS�CONTEXT is

protecting PROCESS �

sort Context �

op ��def� � ProcessId Process �� Context �ctor� �

op nil � �� Context �ctor� �

op ��� � Context Context �� �Context�

�ctor assoc comm id� nil� �

op �definedIn� � ProcessId Context �� Bool �

op def � ProcessId Context �� �Process� �

op not�defined � �� �Process� �ctor� �

op context � �� Context �

vars X X� � ProcessId � var P � Process �

vars C C� � Context �

cmb 	X �def P
 � C � Context if not	X definedIn C
 �

eq X definedIn nil � false �

ceq X definedIn C � 	X �� X�
 or 	X definedIn C�


if 	X� �def P
 � C� �� C �

eq def	X� nil
 � not�defined �

ceq def	X� C
 � P if 	X �def P
 � C� �� C �

ceq def	X� C
 � def	X� C�


if 	X� �def P
 � C� �� C �
 X ��� X� �

endfm

A�� Quicksort Strategy

The following module QUICKSORT�STRATEGY de�nes the quicksort strategy
function� which follows the classical quicksort algorithm for sorting� There is an
auxiliary function quicksortAux taking two additional arguments� namely the
positions of the �rst and last elements to be considered by the function� that
is� the limits of the fragment being considered in each call� There is another
auxiliary function partition� which takes as pivot the �rst of the elements
in the fragment of the array being considered� and returns a pair of terms
�of sort Tuple�Term
 Term�� which metarepresent� respectively� the resulting
array and the position of the pivot element in it� in such a way that all the
elements before such a position are smaller than the pivot� and all the elements
after it are greater than or equal to the pivot� The position of the pivot in the
resulting array is used by the function quicksortAux for making the recursive
calls� Thus� given a fragment with �rst position L and last position H� and
with P the position of the pivot after the call to partition� the recursive calls
will be made with fragments L� P � � and P � �� H� Note that the module

�




expression TUPLE����Term
 Term� provides a sort Tuple�Term
 Term� with
constructor �


�� and with projection functions p�
 and p�
�

fmod QUICKSORT�STRATEGY is

protecting META�LEVEL	SWITCH
 � TUPLE���	Term� Term
 �

op quicksort � Term �� Term �

op quicksortAux � Term Term Term �� Term �

op partition � Term Term Term Term �� Tuple	Term� Term
 �

vars T P L H � Term �

eq quicksort	T
 � quicksortAux	T� �low�T�� �high�T�
 �

eq quicksortAux	T� L� H


� if getTerm	metaReduce	SWITCH� �����L� H�

 �� true

then nil

else if getTerm	metaReduce	SWITCH� ������L� H�

 �� true

then ��	�����
�

getTerm	metaReduce	SWITCH� ��������T� L�

� L�

else ����quicksortAux	p� partition	T� L� �����L� ��� H
�

L������p� partition	T� L� �����L� ��� H
� ��
�

��	�����
�p� partition	T� L� �����L� ��� H
�

��������p� partition	T� L� �����L� ��� H
�

p� partition	T� L� �����L� ��� H
���

quicksortAux	

p� partition	T� L� �����L� ��� H
�

�����p� partition	T� L� �����L� ��� H
� ��� H
��

fi

fi �

eq partition	T� P� L� H


� if getTerm	metaReduce	SWITCH� �����L� H�

 �� true

then if getTerm	metaReduce	SWITCH� �����P� H�

 �� true

then 	getTerm	 ��� move the pivot to position H

metaXapply	SWITCH� T� �switch�

		�I�MachineInt ��

getTerm	metaReduce	SWITCH� P


�

	�J�MachineInt ��

getTerm	metaReduce	SWITCH� H



�

�� maxMachineInt� �

� H


else 	T� P
 ��� The pivot is the biggest element

fi

else if getTerm	

metaReduce	SWITCH� �������������T� P����������T� L��



�� true

then ��� the element at L is smaller than the pivot

��



partition	T� P� �����L� ��� H


else if getTerm	

metaReduce	SWITCH�

��������������T� P�� ��������T� H��



�� true

then ��� the element at H is greater than the pivot

partition	T� P� L� �����H� ��


else partition	

getTerm	

metaXapply	SWITCH� T� �switch�

		�I�MachineInt ��

getTerm	metaReduce	SWITCH� L


�

	�J�MachineInt ��

getTerm	metaReduce	SWITCH� H



�

�� maxMachineInt� �

�

P� �����L� ��� �����H� ��


fi

fi

fi �

endfm
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