Maude: Specification and Programming in
Rewriting Logic*

M. Clavel?, F. Duran®, S. Eker ¢, P. Lincoln ¢, N. Marti-Oliet ¢,
J. Meseguer ¢, and J. F. Quesada®

8 Departamento de Filosofia, Universidad de Navarra, Spain
bETSI Informdtica, Universidad de Mdlaga, Spain
¢ SRI International, Menlo Park, California, USA
dFacultad de Matemdticas, Universidad Complutense, Madrid, Spain

€ Centro de Informdtica Cientifica de Andalucia, Sevilla, Spain

Abstract

Maude is a high-level language and a high-performance system supporting exe-
cutable specification and declarative programming in rewriting logic. Since rewrit-
ing logic contains equational logic, Maude also supports equational specification
and programming in its sublanguage of functional modules and theories. The un-
derlying equational logic chosen for Maude is membership equational logic, that
has sorts, subsorts, operator overloading, and partiality definable by membership
and equality conditions. Rewriting logic is reflective, in the sense of being able to
express its own metalevel at the object level. Reflection is systematically exploited
in Maude endowing the language with powerful metaprogramming capabilities, in-
cluding both user-definable module operations and declarative strategies to guide
the deduction process. This paper explains and illustrates with examples the main
concepts of Maude’s language design, including its underlying logic, functional, sys-
tem and object-oriented modules, as well as parameterized modules, theories, and
views. We also explain how Maude supports reflection, metaprogramming and in-
ternal strategies. The paper outlines the principles underlying the Maude system
implementation, including its semicompilation techniques. We conclude with some
remarks about applications, work on a formal environment for Maude, and a mobile
language extension of Maude.

Key words: Maude, rewriting logic, functional modules, system modules,
parameterization, reflection, internal strategies.

* Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312,
by DARPA and NASA through Contract NAS2-98073, by Office of Naval Re-

Preprint submitted to Theoretical Computer Science June 2001

1 Introduction

Maude [14,15] is a high-level language and high-performance system support-
ing both equational and rewriting logic computation for a wide range of ap-
plications. Maude has been influenced in important ways by OBJ3 [37]; in
particular, Maude’s equational logic sublanguage essentially contains OBJ3
as a sublanguage. The main differences from OBJ3 at the equational level are
a much greater performance, and a richer equational logic, namely, member-
ship equational logic [48], that extends OBJ3’s order-sorted equational logic
[36].

The key novelty of Maude is that—Dbesides efficiently supporting equational
computation and algebraic specification in the OBJ style—it also supports
rewriting logic computation. Rewriting logic [43] is a logic of concurrent change
that can naturally deal with state and with highly nondeterministic concur-
rent computations. It has good properties as a flexible and general seman-
tic framework for giving semantics to a wide range of languages and models
of concurrency [47,35,11,53]. In particular, it supports very well concurrent
object-oriented computation. This is reflected in Maude’s design by providing
special syntax for object-oriented modules. Since the computational and logi-
cal interpretations of rewriting logic are like two sides of the same coin, the
same reasons making it a good semantic framework at the computational level
make it also a good logical framework at the logical level, that is, a metalogic
in which many other logics can be naturally represented and implemented [41].
Consequently, some of the most interesting applications of Maude are metalan-
guage applications, in which Maude is used to create executable environments
for different logics, theorem provers, languages, and models of computation.

Maude’s functional modules are theories in membership equational logic [48,9],
a Horn logic whose atomic sentences are equalities ¢t = t' and membership as-
sertions of the form ¢ : s, stating that a term ¢ has sort s. Such a logic extends
order-sorted equational logic [36], and supports sorts, subsort relations, sub-
sort polymorphic overloading of operators, and definition of partial functions
with equationally defined domains. Maude’s functional modules are assumed
to be Church-Rosser and terminating; they are executed by the Maude engine
according to the rewriting techniques and operational semantics developed in

[9].

Membership equational logic is a sublogic of rewriting logic [43]. A rewrite
theory is a pair (7, R) with 7" a membership equational theory, and R a
collection of labelled and possibly conditional rewrite rules involving terms in
the signature of T'. Maude’s system modules are rewrite theories in exactly this

search Contract N00014-99-C-0198, and by National Science Foundation Grant
CCR-9900334.

sense. The rewrite rules r : t — ¢ in R are not equations. Computationally,
they are interpreted as local transition rules in a possibly concurrent system.
Logically, they are interpreted as inference rules in a logical system.

Rewriting in (7', R) happens modulo the equational axioms in 7. Maude sup-
ports rewriting modulo all combinations of associativity, commutativity, and
identity. The rules in R need not be Church-Rosser and need not be terminat-
ing. Many different rewriting paths are then possible; therefore, the choice of
appropriate strategies is crucial for executing rewrite theories. In Maude, such
strategies are not an extralogical part of the language. They are instead in-
ternal strategies defined by rewrite theories at the metalevel. This is because
rewriting logic is reflective [12,20] in the precise sense of having a finitely
presented universal theory U that can simulate any finitely presented rewrite
theory. Since U is representable in itself, we can then achieve a “reflective
tower” with an arbitrary number of levels of reflection.

Maude efficiently supports this reflective tower through its META-LEVEL mod-
ule, which makes possible not only the declarative definition and execution
of user-definable rewriting strategies, but also many other metaprogramming
applications. In particular, it is possible to define and execute within the logic
an extensible module algebra supporting the OBJ style of parameterized pro-
gramming [37], with highly generic and reusable modules. The basic idea is
that META-LEVEL is extended with new data types for: parameterized modules;
theories, with loose semantics, to state formal requirements in parameters;
views, to bind parameter theories to their instances; and module expressions,
instantiating, transforming, and composing parameterized modules. All such
new types and operations are defined in Maude itself. This, together with the
explicit access to modules as terms provided by reflection, makes the corre-
sponding module algebra completely open, and easily extensible by new mod-
ule operations and transformations [28]. Maude also supports object-oriented
modules, with convenient syntax for object-oriented applications.

All applications typical of equational programming and algebraic specifica-
tion are conveniently and efficiently supported through Maude’s sublanguage
of functional modules. In fact, the paper [48] argues that Maude’s equational
logic, namely, membership equational logic, is so expressive—yet efficiently
implementable—as to offer very good advantages as a logical framework for
a very wide range of algebraic specification languages based on both total
and partial equational logic formalisms. However, many Maude applications
go beyond equational logic. System modules support general rewriting logic
applications. The important area of concurrent and distributed object-based
system specification and prototyping is supported by object-oriented modules.
In addition, reflection makes possible many novel metaprogramming and met-
alanguage applications, and is extremely valuable in the use of rewriting logic
as a logical and semantic framework [41].

The rewriting logic research program has shown good signs of vitality, includ-
ing three international workshops [46,39,34], over two hundred research papers
(see the references in [47,49,51,50]), and three language implementation efforts,
namely ELAN [40,8,7] in France, CafeOBJ [23,25,24] in Japan, and Maude.
Therefore, Maude should be seen as our contribution to the broader collective
effort of building good language implementations for rewriting logic. In this
regard, a key distinguishing feature of Maude is its systematic and efficient
use of reflection, exploiting the fact that rewriting logic is reflective, a feature
that makes Maude remarkably extensible and powerful, and that allows many
advanced metaprogramming and metalanguage applications.

This paper constitutes a revised and extended presentation of concepts and
ideas previously introduced in several conference papers [19,13,30,16,31]. Those
papers have provided snapshots of the language versions at different moments,
while this journal version focuses on the main concepts in a (mostly) version-
independent way. However, we do not develop here complete presentations
of the underlying logics, providing instead bibliographic references where the
reader can find more details.

The reader is assumed to have some knowledge of algebraic specification con-
cepts (as surveyed for example in the recent book [1]). For a more introductory
presentation of Maude, the reader is advised to read the Maude tutorial [15],
where the main features of the language are introduced in an incremental
way by means of a sequence of detailed examples. More language details can
also be found in the Maude manual [14], which has large amounts of version-
dependent information. We plan to keep the manual as an evolving online
document reflecting new versions of the language as they are developed.

The Maude system, the just mentioned tutorial and manual, a collection of
examples and case studies, and a list of related papers are available (free of
charge) at http://maude.csl.sri.com.

2 Membership Equational Logic and Functional Modules

Maude is a declarative language based on rewriting logic, but rewriting logic
has its underlying equational logic as a parameter. There are, for example,
unsorted, many-sorted, and order-sorted versions of rewriting logic, each con-
taining the previous version as a special case. In particular, the underlying
equational logic chosen for Maude is membership equational logic, a conser-
vative extension of both order-sorted equational logic and partial equational
logic with existence equations [48,9]. It supports partiality, subsort relations,
operator overloading, and error specification.

2.1 Membership Equational Logic

A signature in membership equational logic is a triple Q = (K,X,S) with
K a set of kinds, (K,X) a many-sorted (although it is better to say “many-
kinded”) signature, and S = {Si }rex a K-kinded set of sorts. An Q-algebra is
then a (K, X)-algebra A together with the assignment to each sort s € Sy, of a
subset A; C Aj. Intuitively, the elements in sorts are the good, or correct, or
non-error, or defined, elements, whereas the elements without a sort are error
or undefined elements. In general, a total function at the kind level restricts
only to a partial function at the level of sorts.

Atomic formulas are either Y-equations, or memberships of the form ¢ : s,
where the term ¢ has kind & and s € S,. General sentences are Horn clauses
on these atomic formulas, quantified by finite sets of K-kinded variables. That
is, they are either conditional equations

(VX) t=t if (/\uizvi)A(/\wjisj)

or conditional memberships of the form

(VX) t:s if (/\ui:vi)A(/\wj:sj).

Such memberships are a generalization of sort constraints [52] and can be used
to specify partial functions, that become defined when their arguments satisfy
certain equational and membership conditions.

Order-sorted notation can also be used for convenience, and we do so in Maude.
Thus, a subsort declaration s < s’ abbreviates the conditional membership
axiom (Vz) x :s" if x:s. Similarly, an operator declaration f :sy...s, —
sp at the sort level corresponds to an operator declaration at the kind level
together with the conditional membership axiom (Va1,...,x,) f(z1,...,2,) :
So if TSI AL ATy, Sy,

Membership equational logic has all the usual good properties: soundness and
completeness of appropriate rules of deduction, initial and free algebras, rela-
tively free algebras along theory morphisms, and so on [48].

2.2 Functional Modules

In Maude, functional modules are equational theories in membership equa-
tional logic satisfying some additional requirements. Computation in a func-

tional module is accomplished by using the equations as rewrite rules until
a canonical form is found. This is the reason why the equations must satisfy
the additional requirements of being Church-Rosser, terminating, and sort de-
creasing [9]. This guarantees that all terms in an equivalence class modulo
the equations will rewrite to a unique canonical form, and that this canonical
form can be assigned a sort that is smaller than all other sorts assignable to
terms in the class. Since Maude supports rewriting modulo equational theories
such as associativity, commutativity, and identity, all that we say has to be
understood for equational rewriting modulo such axioms [22].

We explain now the syntactic treatment in Maude of kinds, variables, and
conditions in conditional equations and membership axioms.

With respect to kinds, Maude does automatic kind inference from the sorts
declared by the user and their subsort relations, but kinds are not explicitly
named; instead, a kind £ is identified with the set Sy, of its sorts, interpreted as
an equivalence class modulo the equivalence relation generated by the subsort
ordering, that is, two sorts are in this equivalence relation if and only if they
belong to the same connected component in the poset of sorts. Therefore,
for any s € Sy, [s] denotes the kind k£ = Sy, understood as the connected
component of the poset of sorts to which s belongs.

As an example that will be developed step by step in this section, let us
consider as given a graph specification

sorts Node Edge .
ops source target : Edge -> Node .

with operations giving the source and target nodes of each edge, as well as
specific edge and node constants that need not concern us here. Then, we
extend such a specification by declaring a sort Path of paths over the graph,
together with a partial concatenation operator, and appropriate source and
target functions over paths as follows, where the subsort declaration states
that edges are “unitary” paths.

sort Path .
subsort Edge < Path .
op _;_ : [Path] [Path] -> [Pathl]

ops source target : Path -> Node .

This illustrates the idea that in Maude sorts are user-defined, while kinds are
implicitly associated with connected components of sorts and are considered
as “error supersorts.” The Maude system also lifts automatically to kinds all
the operators involving sorts of the corresponding connected components to
form error expressions. Such error expressions allow us to give expressions to
be evaluated the benefit of the doubt: if, when they are simplified, they have

a legal sort, then they are ok; otherwise, the fully simplified error expression
is returned as an error message.

Variables in a Maude module do not have to be declared in variable declara-
tions; they can appear directly in terms. A variable consists of an identifier
composed of a name, followed by a colon, followed by either a sort or a kind
name. For example, P:Path is a variable of sort Path. Variable declarations
are still allowed for convenience; for example, the declaration var P : Path
allows using the name P as an abbreviation for the variable P:Path.

Equational conditions in conditional equations and memberships are made up
of individual equations ¢t = ¢’ and memberships ¢ : s by a binary conjunction
connective /\ which is assumed associative. Furthermore, the concrete syntax
of equations in conditions has two variants, namely, ordinary equations t =
t’, and matching equations t := t’.

For example, the following axioms express the condition defining path con-
catenation and the associativity of this operator:

var E : Edge .
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P)
ceq (P ; Q) ;R=P; (Q; R
if target(P) = source(Q) /\ target(Q) = source(R) .

The conditional membership axiom (introduced by the keyword cmb) states
that an edge concatenated with a path is also a path when the target node
of the edge coincides with the source node of the path. This has the effect of
defining path concatenation as a partial function on paths, although it is total
on the kind [Path] of “confused paths.” Instead of giving the above associa-
tivity equation explicitly (by means of the conditional equation introduced by
the keyword ceq), if we wanted to apply the axioms modulo associativity, we
could have declared an associativity equational attribute in the declaration of
the operator:

op _;_ : [Path] [Path] -> [Path] [assoc]

Assuming variables P, E; and S declared as above, source and target functions
over paths are defined by means of matching equations in conditions as follows:

P .
P .

ceq source(P) = source(E) if E ; S :
ceq target(P) = target(S) if E ; S :

Matching equations are mathematically interpreted as ordinary equations;
however, operationally they are treated in a special way and they must satisfy
special requirements. Note that the variables E and S in the above matching
equation do not appear in the lefthand sides of the corresponding conditional

equations. In the execution of these equations, these new variables become
instantiated by matching the term E ; S against the subject term bound to
the variable P. In order for this match to decide the equality with the ground
term bound to P, the term E ; S must be a pattern. Given a functional mod-
ule M, we call a term ¢ an M -pattern if for any well-formed substitution o
such that for each variable z in its domain the term o(x) is in canonical form
with respect to the equations in M, then o(t) is also in canonical form. A
sufficient condition for ¢ to be an M -pattern is the absence of unifiers between
its nonvariable subterms and lefthand sides of equations in M.

Ordinary equations ¢t = ¢’ in conditions have instead the usual operational
interpretation, that is, for the given substitution o, o(t) and o(#') are both
reduced to canonical form and compared for equality, modulo the equational
axioms specified in the module’s operator declarations such as associativity,
commutativity, and identity.

All conditional equations t = t' if Cy A ... A C, in a functional module M
have to satisfy the following admissibility requirements,! ensuring that all the
extra variables will become instantiated by matching:

(1) vars(t') C vars(t) U | vars(C;).
7j=1
(2) If C; is an equation u; = u} or a membership u; : s, then

i—1
vars(C;) C vars(t) U | vars(C;).

j=1

(3) If C; is a matching equation u; := u}, then w; is an M-pattern and

1—1
vars(u;) C vars(t) U | vars(C;).
7j=1

The satisfaction of the conditions is attempted sequentially from left to right.
Since matching takes place modulo equational attributes, in general many
different matches may have to be tried until a match of all the variables
satisfying the condition is found.

As mentioned before, we expect functional modules to be Church-Rosser and
terminating membership equational logic specifications in the sense of [9, Sec-
tion 10.1]. The above admissibility requirements and the Church-Rosser and
termination assumptions are dropped for functional theories (see Section 4.2)
which support the full generality of the logic.

I These requirements include as a special case what are called properly oriented
and right stable 3-CTRSs in [61], when each equation s; = ¢; in their conditions is
expressed as a matching equation t; := s;.

In membership equational logic the Church-Rosser property of terminating
and sort-decreasing equations is indeed equivalent to the confluence of their
critical pairs in an appropriately generalized sense [9]. Furthermore, both
equality and membership of a term in a sort are then decidable properties [9)].
That is, the equality and membership predicates are computable functions.
We can then use the metatheorem of Bergstra and Tucker [3] to conclude that
such predicates are themselves specifiable by Church-Rosser and terminating
equations as Boolean-valued functions. This has the pleasant consequence of
allowing us to include inequalities ¢ # t' and negations of membership asser-
tions not(t : s) in conditions of equations and of membership axioms, since
such seemingly negative predicates can also be axiomatized inside the logic in a
positive way, provided that we have a subspecification of (not necessarily free)
constructors in which to do it, and that the specification is indeed Church-
Rosser, terminating, and sort decreasing. Of course, in practice they do not
have to be explicitly axiomatized, since they are built into the implementation
of rewriting deduction in a much more efficient way.

Indeed, by default, Maude modules implicitly import a predefined BOOL mod-
ule providing Boolean values true and false, and operators _and_, _or_,
and not_. In addition, this imported predefined module provides the seman-
tic equality operator _==_ checked by equational simplification, its negation

=/=_, a conditional operator if _then_else_fi, and a membership predicate
. :_. For example, the associativity property could also be specified as

ceq (P ; Q) ;R=P; (Q; R
if target(P) == source(Q) and target(Q) == source(R)

More generally, a Boolean expression b is allowed to appear as a conjunct in
an equational condition as a shorthand for the equation b = true.

If a collection of (conditional) equations is Church-Rosser and terminating,
given an expression, no matter how the equations are used from left to right
as simplification rules, any reduction strategy will reach a normal form and
moreover we will always reach the same final result. However, even though the
final result may be the same, some orders of evaluation can be considerably
more efficient than others. It may therefore be useful to have some way of
controlling the way in which equations are applied by means of strategies.

Typically, a functional language is either eager, or lazy with some strictness
analysis added for efficiency, and the user has to live with whatever the lan-
guage provides. Maude adopts OBJ3’s flexible method of user-specified eval-
uation strategies on an operator-by-operator basis [37], adding some improve-
ments to the OBJ3 approach to ensure a correct implementation [33]. For
an n-ary operator f such strategies are specified as lists i; ..., of numbers,
with 7, =0, and 0 < i; < n, for j =1,...,m — 1. For example, the default

bottom-up eager strategy given in Maude to an n-ary operator f, when no
strategy is explicitly declared by the user, is (1 ... n 0), stating that in eval-
uating a term f(ty,...,t,), the subterms ¢y, ..., %, are evaluated in this order
before applying the equations for f to the whole term. Similarly, the strategy
given to if_then_else_fi is (1 0 2 3 0), stating that it is enough to evaluate
the Boolean condition in the first argument before trying the evaluation of
the whole term. In addition to improving efficiency, operator strategies allow
us to compute with infinite data structures which are evaluated on demand;
for example, a lazy “cons” list constructor may have strategy (0). The paper
[33] documents in detail the operational semantics and the implementation
techniques for Maude’s operator evaluation strategies; their concrete syntax
as attributes in operator declarations is explained in [14].

As in the OBJ family of languages [37], functional modules can be unpa-
rameterized, or they can be parameterized with functional theories as their
parameters (see Section 4 for more details). Functional theories are also mem-
bership equational logic theories, but they do not need to be Church-Rosser
and terminating. They have a loose interpretation, in the sense that any al-
gebra satisfying the equations and membership axioms in the theory is an
acceptable model. On the other hand, the semantics of an unparameterized
functional module is the initial algebra specified by its theory. The seman-
tics of a parameterized functional module is the free functor associated to the
inclusion of the parameter theory into the body of the parameterized mod-
ule [48,27]. For example, the semantics of a list module LIST(X :: TRIV)
parameterized over the simple parameter theory TRIV with only one sort E1t
(see Section 4.3) is the functor sending each set to the algebra of lists over
this set. Similarly, the semantics of a sorting module SORTING(Y :: POSET)
parameterized over the POSET functional theory (see Section 4.2) is the functor
sending each poset to the algebra of lists for that poset with a sorting function.

2.8 FExample: Arrays as Lists of Pairs

We finish this section with a functional module illustrating Maude’s support
for mixfix user-definable syntax and for module hierarchies (see Section 4.1).

An array of integers is represented as a list of pairs of integers, where the first
component of each pair corresponds to the array position and the second to
the value in that position. A list of pairs of this kind is the representation
of an array if either it is empty, or the first components of the pairs are all
different and the positions of consecutive pairs are consecutive numbers.

The first module imports the predefined module MACHINE-INT, providing inte-
gers and usual arithmetic operations on them. Then, it defines a sort IntPair

10

for pairs of integers with (_,_) as only constructor? (notice the ctor at-
tribute specifying that this operator is a constructor of the sort). These pairs
are used as components of lists, defined with the concatenation operator __ as
the main constructor, declared with both an attribute assoc for associativity,
and an attribute id: nil for the empty list nil as two-sided identity. Unitary
lists are obtained with a subsort declaration.

fmod INT-PAIR-LIST is
protecting MACHINE-INT .
sort IntPair .
op ((_,_.)) : MachineInt MachineInt -> IntPair [ctor]
sort IntPairList .
subsort IntPair < IntPairList .
op nil : -> IntPairList [ctor]
op __ : IntPairList IntPairList -> IntPairList
[ctor assoc id: nil]
endfm

The following module INT-ARRAY imports the previous one, and then uses
(conditional) memberships to specify the subsort IntArray of lists represent-
ing arrays. The sort NeIntArray is the subsort of nonempty such lists. The
module INT-ARRAY defines two usual partial operators on arrays: _[_] to ob-
tain the value stored in the array at a given position, and _[_->_] to modify
the value at a particular position. Notice that the partiality of such opera-
tors is reflected in their declarations as returning values in a kind instead of
a sort. Finally, the operators low and high return, respectively, the first and
last positions of a given nonempty array.

fmod INT-ARRAY is
protecting INT-PAIR-LIST .
sorts NeIntArray IntArray .
subsorts IntPair < NelntArray < IntArray < IntPairList .

op _[_] : NeIntArray MachineInt -> [MachineInt]
op _[_->_]1 : NeIntArray MachineInt MachineInt -> [IntArray]
ops low high : NeIntArray -> Machinelnt .

vars I J X Y : MachinelInt .
vars L L’ : IntPairList .

mb nil : IntArray .

cmb (I, X) (J, Y) L : NeIntArray
ifI+1=J /\ (J, Y) L : NeIntArray .

2 Since parentheses are normally used for disambiguation, in order to correctly
declare this operation, it is necessary to write ((_,_.)).

11

ceq (L (I, X) L’)[1I] = X if L (I, X) L’ : NeIntArray .
ceq (L (I, X) L)II > Y] = (L (I, V) L?)
if L (I, X) L’ : NeIntArray .

ceq low((I, X) L) =TI if (I, X) L : NeIntArray .
ceq high(L (I, X)) =1 if L (I, X) : NelntArray .
endfm

We remark that in all the conditional equations above there are memberships
in the conditions, making sure that the arguments belong to the appropriate
sorts. These checks guarantee that the equations are applied only to terms hav-
ing a sort (in addition to having a kind, which is checked at parsing time) and
therefore that computation takes place over “good” terms, since terms that
fail to have a sort are considered “error” terms. Equations intended for error
and exception recovery should not include such memberships in conditions.

3 Rewriting Logic and System Modules

The type of rewriting typical of functional modules terminates with a single
value as its outcome. In such modules, each step of rewriting is a step of
replacement of equals by equals, until we find the equivalent, fully evaluated
value. In general, however, a set of rewrite rules need not be terminating, and
need not be Church-Rosser. That is, not only can we have infinite chains of
rewriting, but we may also have highly divergent rewriting paths, that could
never cross each other by further rewriting.

The essential idea of rewriting logic [43] is that the semantics of rewriting
can be drastically changed in a very fruitful way. We no longer interpret a
term ¢ as a functional expression, but as a state of a system; and we no longer
interpret a rewrite rule ¢ — ¢’ as an equality, but as a local state transition,
stating that if a portion of a system’s state exhibits the pattern described by
t, then that portion of the system can change to the corresponding instance
of #'. Furthermore, such a local state change can take place independently
from, and therefore concurrently with, any other non-overlapping local state
changes. Rewriting logic is therefore a logic of concurrent state change.

3.1 Rewriting Logic

A signature in rewriting logic is an equational theory (2, E), where Q) is an
equational signature and FE is a set of (2-equations. Rewriting will operate
on equivalence classes of terms modulo F: for example, string rewriting is
obtained by imposing an associativity axiom; multiset rewriting by imposing

12

associativity and commutativity; and standard term rewriting is obtained as
the particular case in which the set of equations E is empty. Techniques for
rewriting modulo equations have been studied extensively [22,38,55] and can
be used to implement rewriting modulo many equational theories of interest.
This is precisely what Maude does, using the equational attributes given in
operator declarations—such as associativity, commutativity, and identity—to
rewrite modulo such axioms.

Sentences over a signature (£2, E') have the form [t]z — [t']g, where ¢ and ¢’
are ()-terms possibly involving some variables, and [t]z denotes the equivalence
class of the term ¢ modulo the equations F (usually, we omit the subscript and
simply write [t]). A rewrite theory R is a 4-tuple R = (2, E, L, R) where 2 is
an equational signature, F is a set of (2-equations, L is a set of labels, and R is
a set of labelled rewrite rules either of the unconditional form r : [t] — [¢'],
or of the conditional form explained in Section 3.2.

Rewriting logic is a logic for reasoning about concurrent systems having states,
and evolving by means of transitions. The signature of a rewrite theory de-
scribes a particular structure for the states of a system, and the rewrite rules
describe which elementary local transitions are possible in the distributed
state. The inference rules of rewriting logic [43] allow to deduce general con-
current transitions which are possible in a system satisfying such a description.

3.2 System Modules

The most general Maude modules are system modules. They specify the initial
model Tz of a rewrite theory R = (2, F, L, R) in the membership equational
logic variant of rewriting logic (for a detailed construction of Tz in the un-
sorted case see [43]). These initial models capture nicely the intuitive idea of
“rewrite systems” in the sense that they are transition systems whose states
are equivalence classes [t] of ground terms modulo the equations E in R, and
whose transitions are proofs « : [t] — [#/] in rewriting logic, that is, concur-
rent rewriting computations in the system described by the rules in R. Such
proofs are equated modulo a natural notion of proof equivalence that com-
putationally corresponds to the “true concurrency” of the computations. By
adopting a logical instead of a computational perspective, we can alternatively
view such models as “logical systems” in which formulas are validly rewritten
to other formulas by concurrent rewritings which correspond to proofs for the
logic in question. These models have a natural category structure, with states
(or formulas) as objects, transitions (or proofs) as morphisms, and sequential
composition as morphism composition, and in them dynamic behavior exactly
corresponds to deduction. In the parameterized case (see Section 4), the inclu-
sion from the parameter(s) into the module then gives rise to a free extension

13

functor [42], which provides the semantics for the module.

As a first example of system module, we consider an extension of the module
defining integer arrays in Section 2.3.

mod INT-SORTING is
protecting INT-ARRAY .
vars I J X Y : Machinelnt .
var L : IntPairList .
crl [sort] : (I, XX L (J, Y) => (I,) L (J, X)
if X>Y /\N (I, X L (J, Y) : NeIntArray .
endm

For this system module, the corresponding rewrite theory (2, F, L, R) consists
of: a signature 2 given by the sorts, subsort relations, and operator declara-
tions in INT-ARRAY, along with a set of equations and memberships E also
declared in INT-ARRAY; a label set L that only contains the label sort; and a
set of rules R that consists of the conditional rule (introduced by the keyword
crl) on integer arrays that exchanges two values when they are out of place.
The system thus described is highly concurrent, since the sort rule can be
applied concurrently to many different positions in the array. This specifica-
tion happens to be confluent and terminating, but in general these properties
do not hold for other system modules.

Computations need not be confluent (indeed, they can be highly nondetermin-
istic) and need not be terminating. Therefore, the issue of ezecuting rewriting
logic specifications of system modules in general is considerably more subtle
than executing expressions in a functional module, for which the termination
and Church-Rosser properties guarantee a unique final result regardless of the
order in which equations are applied as simplification rules. Hence, we need to
have good ways of controlling the rewriting inference process—which in prin-
ciple could go in many undesired directions—by means of adequate strategies.
As we explain in Section 6, using reflection the rewriting inference process
can be controlled with great flexibility in Maude by means of strategies that
are defined by rewrite rules at the metalevel. However, the Maude interpreter
provides a default strategy for executing expressions in system modules (see
the end of this subsection).

At the equational level, system modules satisfy the same equational require-
ments already described for functional modules, including the requirement
that the equations are Church-Rosser and terminating modulo the given equa-
tional axioms. Furthermore, rewrite rules can take the most general possible
form in the variant of rewriting logic built on top of membership equational

14

logic, that is, they are of the form

t—t if (/\ui:vi)A(/\wj si) A (N s — ar)

with no restriction on which new variables may appear in the righthand side
or the condition. That is, conditions in rules are also formed by an associa-
tive conjunction connective /\, but they generalize conditions in equations
and memberships by allowing also rewrite expressions, for which the concrete
syntax t => t’ is used. Furthermore, equations, memberships, and rewrites
can be intermixed in any order, and, as for functional modules, some of the
equations in conditions can be matching equations.

Of course, in that full generality the execution of a system module will require
strategies that control at the metalevel the instantiation of the extra variables
in the condition and in the righthand side [12,66]. However, a quite general
class of system modules, called admissible modules, are executable by Maude’s
default interpreter. As already mentioned, the equational part of a system
module must always satisfy the same requirements given in Section 2.2 for
functional modules; furthermore, as explained later in this section, its rules
must be coherent with respect to its equations. A system module M is called
admissible if, in addition to the above requirements, each of its rewrite rules

t—t if CiN...ANC,

satisfies the admissibility requirements (1)-(3) in Section 2.2 plus the addi-
tional requirement

(4) If C; is a rewrite u; — u}, then

i—1
vars(u;) C vars(t) U | vars(C;),
j=1

and v} is an €(M)-pattern, for £(M) the equational theory underlying
the module M.

Operationally, we try to satisfy such a rewrite condition by reducing the in-
stance o(u;) to canonical form wv; with respect to the equations, and then
trying to find a rewrite proof v; — w; with w; in canonical form with respect
to the equations and such that w; is a substitution instance of w!.

As for functional modules, when executing a conditional rule in an admissible
system module, the satisfaction of all its conditions is attempted sequentially
from left to right; but notice that now, besides the fact that many matches for
the equational conditions may be possible due to the presence of equational

15

axioms, we also have to deal with the fact that solving rewrite conditions re-
quires search, including searching for new solutions when previous ones fail to
satisfy subsequent conditions. The default interpreter supports search compu-
tations, in which the search is controlled by means of several parameters. In
general, the conditions solved by the default interpreter may be conjunctions
of rewrites, memberships, and equations, with appropriate restrictions on the
occurrence of new variables in the conjuncts.

We illustrate Maude’s syntax for system modules by means of an admissible
module from [41] that defines the transition system semantics for Milner’s CCS
[54] in such a way that transitions correspond to rewrites; that is, a rewrite
P => {A}Q means that process P has performed action A becoming process

Q, which is usually written as P A> Q. Full CCS is represented, including
possibly recursive process definitions by means of contexts. The reader can
find the modules defining the missing pieces of the syntax in Appendix A.1.

mod CCS-SEMANTICS-TRANS is
protecting CCS-CONTEXT .
sort ActProcess .
subsort Process < ActProcess .

op {_}_ : Act ActProcess -> ActProcess [ctor]
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .

%x Prefix
rl [pref] : A . P => {A}P .

**x*x Summation
crl [sum] : P + Q => {A}P’ if P => {A}P’

% Composition
crl [par] : P | Q => {A}(P’ | Q) if P => {A}P’
crl [par] : P | Q => {tau}(P’ | Q’)

if P => {L}’ /\ Q = {" L}Q’

*x*x Restriction
crl [res] : P\ L => {A}(P’ \ L)
if P =>{A}P’ /\ (A =/=L) /\ (A=/="1L)

*xx Relabelling
crl [rel] : PM / L] => {M}P’[M / L]) if P => {L}P’ .
crl [rel] : P[M / L] => {~ M}®P’[M / L]) if P => {~ L}P’
crl [rel] : P[M / L] => {A}(®P’[M / L])

if P => {A}YP’ /\ (A =/=L) /\ (A=/="1L)

*x*x Definition
crl [def] X => {A}P’

16

if (X definedIn context) /\ def(X, context) => {A}P’
endm

This representation of CCS in Maude is semantically correct in the sense that
given a CCS process P, there are processes P, ..., P,_; such that

ap_
P al P1 a9k 1Pk71 aj Pl

if and only if P can be rewritten into {al}...{ak}P’ (see [41]).

A rewrite theory has both rules and equations, so that rewriting is performed
modulo such equations. However, this does not mean that the Maude imple-
mentation must have a matching algorithm for each equational theory that
a user might specify. In fact, this is impossible, since matching modulo an
arbitrary theory is undecidable. The proposed solution is to divide the equa-
tions E into a set A of axioms, for which matching algorithms exist in the
Maude implementation,® and a set E’ of equations that are Church-Rosser,
terminating, and sort decreasing modulo A; that is, the equational part must
satisfy the same requirements as a functional module.

Moreover, we require that the rules R in the module are coherent [67] (or at
least what might be called “weakly coherent” [44,68]) with the equations E’
modulo A. This means that appropriate critical pairs between rules and equa-
tions are joinable, allowing us to intermix rewriting with rules and rewriting
with equations without losing rewrite computations by failing to perform a
rewrite that would have been possible before an equational deduction step
was taken. In this way, we get the effect of rewriting modulo E' U A with just
a matching algorithm for A.

Under these circumstances, the default strategy in the Maude interpreter ap-
plies the rules in a top-down rule fair way,* always reducing to canonical form
using E' before applying any rule in R. More specifically, before the applica-
tion of each rewrite rule, the expression is simplified to its canonical form
by applying the equations £’ modulo A; then, the rule is applied to such a
simplified expression modulo the axioms A according to the default strategy.

3 Maude’s rewrite engine has an extensible design, so that matching algorithms
for new theories can be added and can be combined with existing ones [32]. As
already mentioned, matching modulo associativity, commutativity, and (left-, right-
or two-sided) identity, and combinations of these attributes are supported.

4 “Top-down” means that each rewrite is attempted beginning at the top of the
term, so that any position rewritten does not have a position above it that could
also have been rewritten. A limited form of fairness is achieved by keeping the rules
in a circular list, and moving a rule to the end of the list after it has been applied.

17

3.3 FExample: Blocks World

As another example of a system module, we specify a simple concurrent sys-
tem, the blocks world, a typical example in artificial intelligence circles. In
this version there is a table on top of which we have the blocks, which can be
moved by means of three actions. A block is represented as a record with three
fields: a label identifying the block (given by a quoted identifier, as provided
in the predefined module QID), the label of the block on top (or the constant
clear if there is none), and the label of the block below (or the constant table
if there is none because the block is on the table). A state of the blocks world
is then represented as a set of such blocks that is consistent in the sense that
each block has a different label, and that for each pair of blocks a and b, if a
is on top of b, then b is below a. In the module below we only make explicit
the first part of the consistency check (all block labels are different).

mod BLOCKS-WORLD is
protecting QID .
sorts Up Down .
subsorts Qid < Up Down .
op clear : -> Up [ctor]
op table : -> Down [ctor]
sort Block .
op {label:_, under:_, on:_} : Qid Up Down -> Block [ctor]

sort State .

subsort Block < State .

op empty : -> State [ctor]

op __ : State State -> [State] [ctor assoc comm id: empty]
op free : Qid State -> Bool .

vars X Y Z : Qid . vars S S’ : State .
var U U’ : Up . vars 0 0’ : Down .

cmb {label: X, under: U, on: 0} S : State if free(X, S)

eq free(X, empty) = true .

ceq free(X, S) = X =/= Y and free(X, S’)
if {label: Y, under: U, on: 0} S’

|
wn

rl [move] : {label: X, under: clear, on: Z}
{label: Z, under: X, on: 0}
{label: Y, under: clear, on: 0’}
=> {label: X, under: clear, on: Y}
{label: Z, under: clear, on: 0}
{label: Y, under: X, on: 0’} .

rl [unstack] : {label: X, under: clear, on: Z}

18

c b
a b c
I F

Fig. 1. Initial and final states in a world with three blocks.

{label: Z, under: X, on: 0}
=> {label: X, under: clear, on: table}
{label: Z, under: clear, on: 0} .

rl [stack] : {label: X, under: clear, on: table}
{label: Z, under: clear, on: 0}
=> {label: X, under: clear, on: Z}
{label: Z, under: X, on: 0} .
endm

The rule move moves a block X sitting on top of another block Z to the top of
block Y. The rule unstack moves a block X sitting on top of another block Z
to the table, whereas the rule stack does the reverse action.

Consider for example the states described in Figure 1. The initial state I on
the left and the final state F' on the right are respectively described by the
following two terms of sort State:

{label: ’a, under: ’c, on: table}
{label: ’c, under: clear, on: ’a}
{label: ’b, under: clear, on: table}

{label: ’c, under: ’b, on: table}
{label: ’b, under: ’a, on: ’c}
{label: ’a, under: clear, on: ’b}

The fact that the “sequential plan” (in a self-explanatory intuitive notation)
unstack(c, a); stack(b, ¢); stack(a, b) moves the blocks from state I to state
F' corresponds directly to a sequence of computational rewrite steps applying
the corresponding rewrite rules.

3.4 Object-Oriented Modules

Among the many concurrent systems that we can specify as system modules
in Maude, concurrent object-oriented systems are an important subclass [44].

19

In a concurrent object-oriented system the concurrent state, which is usu-
ally called a configuration, has typically the structure of a multiset made up
of objects and messages that evolves by concurrent rewriting modulo asso-
ciativity, commutativity and identity, using rules that describe the effects of
communication events between objects and messages.

An object in a given state is represented in Maude as a term

<O:Clay:vy, ..., an: v, >

where O is the object’s name or identifier, C' is its class identifier, the a;’s
are the names of the object’s attribute identifiers, and the v;’s are the corre-
sponding values. Messages do not have a fixed syntactic form; such syntactic
form is defined by the user for each application. The concurrent state of an
object-oriented system is then a multiset of objects and messages, called a
Configuration, with multiset union described with empty syntax __.

The following module CONFIGURATION defines the basic concepts of concurrent
object systems. Note that the sorts Msg and Attribute, as well as the sorts
0id and Cid of object and class identifiers, are left unspecified. They will
become fully defined when the CONFIGURATION module is extended by specific
object-oriented definitions in a given object-oriented module.

fmod CONFIGURATION is
sorts 0id Cid Attribute AttributeSet
Object Msg Configuration .
subsorts Object Msg < Configuration .
subsort Attribute < AttributeSet .

op none : -> AttributeSet [ctor]

op _,_ : AttributeSet AttributeSet -> AttributeSet
[ctor assoc comm id: none]

op <_:_|_> : 0id Cid AttributeSet -> Object [ctor]

op none : -> Configuration [ctor]

op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none]
endfm

Concurrent object-oriented systems are defined in Maude by means of object-
oriented modules—introduced by the keyword omod—using a syntax more con-
venient than that of system modules because it assumes acquaintance with the
basic entities, such as objects, messages, and configurations, and supports lin-
guistic distinctions appropriate for the object-oriented case. In particular, all
object-oriented modules implicitly include the above CONFIGURATION module
and assume its syntax.

Classes are defined with the keyword class, followed by the name of the class

20

C, and by a list of attribute declarations separated by commas. Each attribute
declaration has the form a : S, where a is an attribute identifier and S is the
sort in which the values of the attribute range; that is, class declarations have
the form class C | a;: Sy, ..., ap: S, .

The rewrite rules in an object-oriented module specify in a declarative way the
behavior associated with the messages. The multiset structure of the config-
uration provides the top-level distributed structure of the system and allows
concurrent application of the rules [44].

By convention, the only object attributes made explicit in a rule are those rele-
vant for that rule. In particular, the attributes mentioned only on the lefthand
side of the rule are preserved unchanged, the original values of attributes men-
tioned only on the righthand side of the rule do not matter, and all attributes
not explicitly mentioned are left unchanged.

The following object-oriented module gives an object-oriented specification of
the blocks world described in Section 3.3. A block is now represented as an
object with two attributes, under, saying whether it is under another block
or it is clear, and on, saying whether the block is on top of another block or
is on the table.

omod 00-BLOCKS-WORLD is
protecting QID .
sorts BlockId Up Down .
subsorts Qid < BlockId < 0id .
subsorts BlockId < Up Down .
op clear : -> Up [ctor]
op table : -> Down [ctor]
class Block | under : Up, on : Down .
vars X Y Z : BlockId .

rl [movel < X : Block | under : clear, on : Z >
< Z : Block | under : X >
<Y : Block | under : clear >
=> <X : Block | on : Y >
< Z : Block | under : clear >
<Y : Block | under : X > .
rl [unstack] < X : Block | under : clear, on : Z >
< Z : Block | under : X >
=> < X : Block | on : table >
< Z : Block | under : clear > .
rl [stack] < X : Block | under : clear, on : table >
< Z : Block | under : clear >
=> < X : Block | on : Z >

21

< Z : Block | under : X > .
endom

The states I and F'in Figure 1 are respectively described now by the following
two configurations:

< ’a : Block | under : ’c, on : table >
< ’c : Block | under : clear, on : ’a >
< ’b : Block | under : clear, on : table >

< ’c : Block | under : ’b, on : table >
< ’b : Block | under : ’a, on : ’c >
< ’a : Block | under : clear, on : ’b >

Class inheritance is directly supported by Maude’s order-sorted type struc-
ture. A subclass declaration C < C’ in an object-oriented module is just a
particular case of a subsort declaration. The effect of a subclass declaration is
that the attributes, messages, and rules of all the superclasses as well as the
newly defined attributes, messages, and rules of the subclass characterize the
structure and behavior of the objects in the subclass.

Suppose that the blocks world is further refined so that now blocks can have
colors, but we still want the rules for manipulating blocks to remain the same.
This is trivially achieved by class inheritance as illustrated by the following
module.

omod 00-BLOCKS-WORLD+COLOR is
including 00-BLOCKS-WORLD .
sort Color .
ops red blue yellow : -> Color [ctor]
class ColoredBlock | color : Color .
subclass ColoredBlock < Block .
endom

In this example, there is only one class immediately above ColoredBlock,
namely, Block, but a class may in general be defined as a subclass of several
classes, i.e., multiple inheritance is also supported. If an attribute and its sort
have already been declared in a superclass, they should not be declared again
in the subclass; indeed, all such attributes are inherited. In the case of multiple
inheritance, when an attribute occurs in two different superclasses, then the
sort associated to it in each of those superclasses must be the same. Then, a
class inherits all the attributes, messages, and rules from all its superclasses.
An object in the subclass behaves exactly as any object in any of the super-
classes, but it may exhibit additional behavior due to the introduction of new
attributes, messages, and rules in the subclass.

The semantics of object-oriented modules is entirely reducible to that of sys-

22

tem modules, in the sense that each object-oriented module can be translated
into a corresponding system module whose semantics is by definition that
of the original object-oriented module [44,27]. In particular, rewrite rules are
modified to make them applicable to all objects of the given classes and of
their subclasses, that is, not only to objects whose class identifiers are those
explicitly given.

However, although Maude’s object-oriented modules are in this way reduced
to system modules, there are of course important conceptual advantages pro-
vided by the syntax of object-oriented modules. This syntax allows the user to
think and express his or her thoughts in object-oriented terms whenever such
a viewpoint seems best suited for the problem at hand. Those conceptual ad-
vantages would be lost if only system modules were provided. For example, in
an object-oriented configuration we have objects that maintain their ¢dentity
across their state changes, and the notions of fairness adequate for them are
more specialized than those appropriate for arbitrary system modules. This
is because, since each object has an individual identity, fairness should now
be localized to individual objects and messages, which should not be starved
even when other similar objects and messages are rewritten.

In summary, the approach taken in Maude is to provide a logical semantics
for concurrent object-oriented programming by taking rewriting logic as its
foundation, and then defining in a rigorous way higher-level object-oriented
concepts above such a foundation. The papers [44,45] provide good background
on such foundations. Talcott’s papers [62-65] give rewriting logic foundations
for actors from a somewhat different viewpoint. The paper [53] shows how,
for object-oriented modules satisfying some simple requirements, their ini-
tial model semantics coincides with a very natural truly concurrent semantics
based on a partial order of events.

One important strength of the object-oriented viewpoint is that all kinds of
entities in the external world can be conceptualized as objects and can be
interacted with from a computation by message passing. Built-in objects ex-
tend Maude with interfaces allowing interaction with external entities such
as internet sockets, file systems, window systems, and so on. In this way, the
computation can be connected with the external world and with other Maude
computations in different machines in a distributed way. Interfaces to exter-
nal entities are specified by means of built-in object-oriented modules defining
built-in objects.

Such built-in object-oriented modules can be imported by ordinary object-
oriented modules so that, in general, the object-oriented state of a computa-
tion consists of two parts: a configuration of ordinary objects and messages
that is represented in Maude as a multiset of terms representing such objects
and messages, and a set of built-in objects, together with messages to and

23

from those objects. Conceptually we can think of these two parts as a sin-
gle bigger configuration of objects and messages. However, built-in objects
are not themselves visible in the configuration of ordinary objects and mes-
sages, except indirectly, through the messages that they send. In particular,
the internal structure of built-in objects is hidden, so that they can only be
interacted with by asynchronous message passing.

4 Module Operations and Parameterized Programming

Specifications and code should be structured in modules of relatively small size
to facilitate understandability of large systems, increase reusability of compo-
nents, and localize the effects of system changes. Maude fully supports these
goals by means of a rich and extensible module algebra supporting, in particu-
lar, parameterized programming techniques in the OBJ3 style [37]. Moreover,
Maude provides useful basic support for modularity by allowing the definition
of module hierarchies, that is, acyclic graphs of module importations.

Parameterized modules, theories, and views are the basic building blocks of
parameterized programming [10,37,26,23]. As in OBJ, a theory® defines the
interface of a parameterized module, that is, the structure and properties
required of an actual parameter. The instantiation of the formal parameters
of a parameterized module with actual parameter modules requires a view
from the formal interface theory to the corresponding actual module. That is,
views provide the interpretation of the actual parameters. For more details on
parameterized modules in Maude, the reader is advised to consult [27].

4.1 Module Hierarchies

Mathematically, we can think of module hierarchies as partial orders of rewrite
theory inclusions, that is, the theory of the importing module contains the
theories of its submodules as subtheories. Recall that a rewrite theory is a four-
tuple R = (2, E, L, R), where (2, E) is a theory in membership equational
logic. As already explained in Section 3.2, a system module is a rewrite theory
with initial semantics. Note that we can use the inclusion of membership
equational logic into rewriting logic to view a functional module specifying
an equational theory (Q, E) as a degenerate case of a rewrite theory, namely
the rewrite theory (2, E,(),0). In fact the initial algebra of (2, E) and the

> The reader should be careful in not confusing the different uses of the word
“theory” in this section.

24

initial model of (2, E, 0, §) coincide [43]. Therefore, in essence we can view all
modules as rewrite theories.

The most general form of module inclusion is provided by the including
keyword, followed by the name of the imported module. The protecting
keyword is a more restricted form of inclusion, in the sense that it makes a
semantic assertion about the relationship between the initial models of the
two theories. Let R = (2, E, L, R) be the rewrite theory specified by a system
module, and let R' = (@', E', L', R') be the theory of a supermodule, so that we
have a theory inclusion R C R’. Then, we can view each model M’ of R’ as a
model M'|z of R, simply by disregarding the extra sorts, operators, equations,
membership axioms, and rules in R — R. Since, as explained in Section 3.2,
the rewrite theories R and R’ have respective initial models 7z and Tx:, by
initiality of Tz we always have a unique R-homomorphism h : Tp — Tr/|%.

In the models of a rewrite theory the sorts are interpreted as categories. Then,
the protecting importation asserts that for each sort s in the signature €2 of R
the function h, is an isomorphism of categories. Intuitively, this means that the
initial model of the supermodule does not add any “junk” or any “confusion”
to the initial model of the submodule. Note that the expected condition would
have been to require h to be an R-isomorphism. However, due to the presence
of error elements at the kind level, the isomorphism condition would be too
strong, since in general, when enlarging a signature, there will be new error
terms that cannot be proved equal to old ones. See [9] for a detailed discussion
of, and proof techniques for, protecting extensions in membership equational
logic.

Of course, the protecting assertion cannot be checked by Maude at runtime.
It requires inductive theorem proving. Using the proof techniques in [9] to-
gether with an inductive theorem prover for membership equational logic and
a Church-Rosser checker such as those described in [17], this can be done for
functional modules; and it seems natural to expect that these techniques and
tools will extend to similar ones for rewrite theories.

By contrast, the including assertion does not make such requirements on h.
It does, however, make some requirements. Namely, if the subtheory R does
itself contain a proper subtheory R, that it imports in protecting mode,
then the inclusion Ry C R’ is still assumed to be protecting. For such an
inclusion to become an including assertion, we have to say so by explicitly
listing the module defining Ry in the list of modules imported in including
mode.

25

4.2 Theories

Theories are used to declare module interfaces, namely the syntactic and se-
mantic properties to be satisfied by the actual parameter modules used in an
instantiation. As for modules, Maude supports three different types of theo-
ries: functional theories, system theories, and object-oriented theories. Their
structure is the same as that of their module counterparts.

Theories are rewriting logic theories with a loose interpretation, as opposed
to modules that have an initial semantics. Therefore, theories are allowed
to contain more general sentences that need not satisfy all the requirements
described for modules.

Let us begin by introducing the functional theory TRIV, which requires just a
sort.

fth TRIV is
sort Elt .
endfth

The theory of partially ordered sets with an antireflexive and transitive binary
operator is expressed in the following way. ©

fth POSET is

protecting BOOL .

sort Elt .

op _<_ : Elt E1lt -> Bool .

vars X Y Z : Elt .

eq X < X = false .

ceq X < Z =true if X <Y and Y < Z .
endfth

The theory of totally ordered sets, that is, posets in which all pairs of distinct
elements have to be related, is specified as follows:

fth TOSET is

including POSET .

vars X Y : Elt .

eq X <Yor Y<Xor X ==Y = true .
endfth

The including importation of a theory into another theory keeps its loose
semantics. However, if the imported theory contains a module, which therefore

6 As with modules, theories implicitly import the predefined module BOOL, and
therefore the protecting BOOL declaration is unnecessary.

26

must be interpreted with an initial semantics,” then that initial semantics is
maintained by the importation. For example, in the definition of the POSET
theory, the declaration protecting BOOL ensures that the initial semantics
of the functional module for the Booleans is preserved, which is in fact a
crucial requirement. This requirement is then preserved by TOSET when POSET
is included.

4.8 Parameterized Modules

Theories are used to declare the interface requirements for parameterized mod-
ules. Modules can be parameterized by one or more theories. All theories ap-
pearing in the interface must be labelled in such a way that their sorts can
be uniquely identified. The general form for the interface of a parameter-
ized moduleis (X; :: 11, ..., X, ::T1,) where Xy,..., X, are the labels and
Ty,..., T, are the names of the respective parameter theories.

All the sorts coming from theories in the interface must be qualified by their
labels, even if there is no ambiguity. If Z is the label of a parameter theory
T, then each sort S in T has to be qualified as Z.S (the reason for this will
be explained below). Moreover, there cannot be subsort overloading between
an operator declared in a theory being used as parameter of a parameterized
module and an operator declared in the body of the parameterized module,
or between operators declared in two parameter theories of the same module.

In the body of a parameterized module M (X, :: Ty, ..., X, ::T,), any pa-
rameterized sort S is written in the form S(X;, ..., X,,). When the module
is instantiated with views Vi, ..., V,, then this sort becomes S(V;, ..., V,).
Thus, a simple parameterized module for lists is defined as follows:

fmod LIST(X :: TRIV) is

sort List(X)

subsort X.Elt < List(X) .

op nil : -> List(X) [ctor]

op __ : List(X) List(X) -> List(X) [ctor assoc id: nil]
endfm

The module LIST has only one parameter. In general, as already mentioned,
parameterized modules can have several parameters. It can furthermore hap-
pen that several parameters are declared with the same parameter theory.
Therefore, parameters cannot be treated as normal submodules, since we do
not want them to be shared when their labels are different. We regard the

7 In Maude, the importation of a module into a theory is supported only in pro-
tecting mode.

27

relationship between the body of a parameterized module and the interface of
its parameters not as an inclusion, but as a module constructor which is eval-
uated generating renamed copies of the parameters, which are then included.
In such copies of parameter theories sorts are renamed as follows: If Z is the
label of a parameter theory T, then each sort S in T is renamed to Z.S. This is
the reason why all occurrences of these sorts in the body of the parameterized
module must mention their corresponding renaming, as explained before.

Let us consider as an example the following module TUPLE[2]. Notice the use
of the qualifications for the sorts coming from each of the parameters, and
notice also the form of the sort Tuple(C1, C2).

fmod TUPLE[2](C1 :: TRIV, C2 :: TRIV) is
sort Tuple(Cl, C2)
op ((_,.)) : C1.Elt C2.Elt -> Tuple(Cl, C2) [ctor]
op pl_ : Tuple(Cl, C2) -> C1.Elt .
op p2_ : Tuple(Cl, C2) -> C2.Elt .
var E1 : C1.Elt .
var E2 : C2.Elt .
eq pl (E1, E2) = E1 .
eq p2 (E1, E2) = E2 .
endfm

In Maude, the module expression TUPLE[n], for n a nonzero natural number,
generates a parameterized module specifying a tuple of the corresponding
size. For example, for n equal to 2, the system generates automatically the
parameterized module TUPLE[2] given above.

4.4 Views

Views are used to assert how a particular target module or theory is claimed to
satisfy a source theory. In general, there may be several ways in which such re-
quirements might be satisfied, if at all, by the target module or theory; that is,
there can be many different views, each specifying a particular interpretation
of the source theory in the target. Each view declaration has an associated set
of proof obligations, namely, for each axiom in the source theory it should be
the case that the axiom’s translation by the view holds in the target. Since the
target can be a module interpreted initially, verifying such proof obligations
may in general require inductive proof techniques of the style supported for
Maude’s logic in [17].

All views have to be defined explicitly, and all of them must have a name. As

any theory or module, views should have been defined before they are used.
In the definition of a view we have to indicate its name, the source theory, the

28

target module or theory, and the mapping of each sort, operator, class, and
message in the source theory, although it is possible to simplify such mappings
(see [27]).

The following view shows how MACHINE-INT satisfies the theory TRIV:

view Int from TRIV to MACHINE-INT is
sort El1t to MachinelInt .
endv

We can also have views between theories, such as the following:

view Toset from TRIV to TOSET is
sort El1t to Elt .
endv

Moreover, views can be parameterized:

view Tuple(X :: TRIV, Y :: TRIV) from TRIV to TUPLE[2] (X, Y) is
sort Elt to Tuple(X, Y)
endv

Note that the view Tuple is parameterized by two different instances of the
theory TRIV. Parameterized views of this kind allow us to keep the param-
eter part of the target uninstantiated. The paper [31] discusses the use of
parameterized theories and views in Maude.

4.5 Module Instantiation

Instantiation is the process by which actual parameters are bound to the
parameters of a parameterized module and a new module is created as a
result. This can be seen in fact as the evaluation of a module expression. The
instantiation requires a view from each formal parameter to its corresponding
actual parameter. Each such view is then used to bind the names of sorts,
operators, etc. in the formal parameters to the corresponding sorts, operators
(or expressions), etc. in the target.

A parameterized module is instantiated with views explicitly defined previ-
ously. For example, we can define a module providing finite lists of pairs,
whose first components are machine integers and whose second components are
still parameterized by means of the module expression LIST (Tuple (Int, X)),
which uses the view Int as well as an instance of the parameterized view
Tuple, both defined in Section 4.4. This expression is used in the following
module, which is a general parameterized version of the array representation

29

module in Section 2.3.

fmod ARRAY(X :: TRIV) is
protecting LIST(Tuple(Int, X))
sorts NeArray(X) Array(X)
subsorts Tuple(Int, X) < NeArray(X)
< Array(X) < List(Tuple(Int, X))
op _[_] : NeArray(X) MachineInt -> [X.Elt]
op _[_->_]1 : NeArray(X) MachineInt X.Elt -> [Array(X)]
ops low high : NeArray(X) -> MachinelInt .

vars I J : Machinelnt .
vars Z Y : X.Elt .
vars L L’ : List(Tuple(Int, X))

mb nil : Array(X)
cmb (I, Z) (J, Y) L : NeArray(X)
if (I +1=17)/\ J, Y) L : NeArray(X)

ceq (L (I, Z2) L’)[1I] = Z if L (I, Z) L’ : NeArray(X)
ceq (L (I, Z) L”)[I -> Y] = (L (I, Y) L’)
if L (I, Z) L’ : NeArray(X)

ceq low((I, Z) L) =TI if (I, Z) L : NeArray(X)
ceq high(L (I, Z)) =TI if L (I, Z) : NeArray(X)
endfm

As mentioned in Section 4.4, we can define views from theories to theories
and can use such views to define new parameterized modules. For example,
we can define a parameterized system module specifying a sorting rule on
arrays whose elements belong to a totally ordered set as follows:

mod SORTING(X :: TOSET) is

protecting ARRAY(Toset) (X)

vars I J : Machinelnt .

vars Z Y : X.Elt .

var L : List(Tuple(Int, Toset)) (X)

crl [sort] : (I, Z) L (J, Y) => (I, Y) L (J, 2)

ifZ>Y /\ (I, Z) L (J, Y) : NeArray(Toset) (X)

endm

The module INT-SORTING in Section 3.2 can be obtained as the module ex-
pression SORTING(IntAsToset) where

view IntAsToset from TOSET to MACHINE-INT is
sort E1t to Machinelnt .
vars X Y : Elt .
op X <Y toterm X <=Y and X =/=Y .

30

endv

Note that an operator can be mapped to a term. In the IntAsToset view, for
illustration purposes, the _<_ relation of a toset is mapped to an expression
using the “less than or equal” operator _<=_ and the inequality operator _=/=_
in MACHINE-INT, instead of using directly the operator _<_ in MACHINE-INT.

5 Reflection and the META-LEVEL

Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent way, so that the
object-level representation correctly simulates the relevant metatheoretic as-
pects. In other words, a reflective logic is a logic which can be faithfully repre-
sented in itself. Maude’s language design and implementation make systematic
use of the fact that rewriting logic is reflective [12,20]. This makes the metathe-
ory of rewriting logic accessible to the user in a clear and principled way.
However, since a naive implementation of reflection can be computationally
expensive, a good implementation must provide efficient ways of performing
reflective computations. This section explains how this is achieved in Maude
through its predefined META-LEVEL module.

5.1 Reflection and Metalevel Computation

Rewriting logic is reflective in a precise mathematical way, namely, there is a
finitely presented rewrite theory U/ that is universal in the sense that we can
represent in I any finitely presented rewrite theory R (including U itself) as
a term R, any terms ¢, in R as terms £,#, and any pair (R,?) as a term
(R, %), in such a way that we have the following equivalence

(1) REt—t & UF(R,T) — (R,T).

Since U is representable in itself, we can achieve a “reflective tower” with an
arbitrary number of levels of reflection, because we have

Rit—t & UFRID - RT) & U U R,D) — U, R, ...

In this chain of equivalences we say that the first rewriting computation takes
place at level 0, the second at level 1, and so on. In a naive implementation,
each step up the reflective tower comes at considerable computational cost,

31

because simulating a single step of rewriting at one level involves many rewrit-
ing steps one level up. It is therefore important to have systematic ways of
lowering the levels of reflective computations as much as possible—so that a
rewriting subcomputation happens at a higher level in the tower only when
this is strictly necessary.

To achieve a systematic descent into equivalent rewriting computations at
lower levels, the key idea is to exploit the equivalence (1). Detailed proofs of
this equivalence have been given for unsorted unconditional theories [12] and
for unsorted and many-sorted conditional theories [20]. The extension to the
case of interest for Maude—mnamely to conditional rewrite theories with mem-
bership equational logic as the underlying equational logic—although nontriv-
ial, is essentially unproblematic. We therefore assume a universal theory U for
this more general class of finitely presented rewrite theories. In particular, the
signature Y;; of U has sorts Term, Module, and Kind, whose respective ele-
ments 7 : Term, R : Module, and K : Kind represent terms, rewrite theories,
and kinds in a signature, respectively. We assume that there is also an equa-
tionally defined Boolean predicate parse : Module X Kind x Term — Bool so
that parse(R, K,t) = true if t is an R-term of kind K, and parse(R, K,t) =
false otherwise.

We can exploit the equivalence () by introducing the notion of descent func-
tion, that is, a function that, given metalevel representations for a rewrite
theory R and a term ¢ in it, rewrites such a term in R according to a given
strategy and returns the metarepresentation of the resulting term. Such func-
tions can be simply expressed in terms of a general sequential interpreter func-
tion I for rewriting logic. This is a partial function that takes three arguments:
a finitely presented rewrite theory R, a term ¢, and a deterministic strategy
S. In case of termination it returns either the term t' to which ¢ was rewritten
according to S, or an error message that is not a term in R. The function is
undefined in case the strategy does not terminate. For any finitely presented
rewrite theory R, terms ¢,¢' in it, and admissible deterministic strategy S, any
such interpreter function must of course satisfy the correctness requirement

(b) I(R,t,S)=t = RFt—1.

The point is that, regardless of the particular details of I, we can always
equationally axiomatize any such effective interpreter function by means of a
Church-Rosser, but in general nonterminating, finitary equational theory Z.
This can be done in a signature that we can assume contains Y, as a subsig-
nature. By extending our universal theory U with the new sorts, operators,
and equations of Z, we obtain an extended rewrite theory 4 UZ. A descent
function is then a function d : Module x Term X Parameters — Term such
that there is a deterministic strategy expression Sy with a single free variable
of sort Parameters satisfying the equality d(R,%,p) = I[(R,t, Sq4(p)).

32

Such descent functions are definable equationally as definitional extensions of
the theory ¢4 UZ. Note that, since we have only added some new equations,
the only rewrite rules in &/ U Z are exactly those in Y. But, given a descent
function d, we can now exploit the equivalence (f) by adding to Y UZ a descent
rule

d: (M,z) — (M,y)
if parse(M, K, x) = true A parse(M, K,y) = true A d(M, z,p) = y.

where M : Module, x,y : Term, K : Kind, and p : Parameters. The equiv-
alence (f) can be exploited for efficiency reasons with such a rule, because
the sequential interpreter I can be a built-in function such as the Maude in-
terpreter; therefore, instantiating M with R, we can use efficient deduction
in R to perform deduction in U. Let M denote a rewrite theory of the form
M =UUZUD, where D is the addition of several descent functions and of
their associated descent rules. We shall call M a metalevel theory.

The addition of descent rules to U is of course conservative, in the sense of
not adding any rewrites that could not be performed, albeit less efficiently, in
U itself, since for any descent rule d we have

M R,D -5 (R, T)=I(R,t,S4(p)) =t

AREt—st
SuUr (R — (R7).

Note that, by applying several descent functions, we can descend several levels
in the reflective tower; that is, a meta-metalevel computation can be efficiently
carried out at the object level. More generally, we should view descent func-
tions as basic strategies, that can be used as fundamental building blocks to
define internal strategy languages, in which they can be combined with each
other and with more complex strategies at several levels of reflection to per-
form efficiently sophisticated metalevel computations (see Section 6).

5.2 The Module META-LEVEL

In Maude, key functionality of a metalevel theory M with several descent
functions has been efficiently implemented in a functional module META-LEVEL,
by using as the interpreter function I Maude’s own interpreter. Furthermore,
several other useful functions of the universal theory U are also built-in for

33

efficiency reasons. In the module META-LEVEL:

e Maude terms are reified as elements of a data type Term of terms;

e Maude modules are reified as terms in a data type Module of modules;

e the processes of reducing a term to normal form in a functional module
and of finding whether such a normal form has a given sort are reified by a
descent function metaReduce;

e the process of applying a rule of a system module to a subject term is reified
by descent functions metaApply and metaXapply;

e the process of rewriting a term in a system module using Maude’s default
interpreter is reified by a descent function metaRewrite;

e the process of matching a pattern to a subject term is reified by descent
functions metaMatch and metaXmatch; and

e parsing and pretty printing of a term in a module, as well as key sort
operations such as comparing sorts in the subsort ordering of a signature,
are also reified by corresponding metalevel functions.

Sorts and kinds are represented as specific subsorts of the sort Qid of quoted
identifiers. Since operator declarations can use both sorts and kinds, we denote
by Type the union of Sort and Kind.

subsorts Sort Kind < Type < Qid.
subsort Type < Typelist .

5.3 Representing Terms

Terms are reified as elements of the data type Term of terms. The basic cases in
the representation of terms are obtained by subsorts Constant and Variable
of the sort Qid. Constants are quoted identifiers that contain the constant’s

name and its type separated by a “.”, e.g., ’0.Nat. Similarly, variables contain

their name and type separated by a “:”, e.g., ’N:Nat. Appropriate selectors
extract their names and types.

subsorts Constant Variable < Qid .
op getName : Constant -> Qid . op getName : Variable -> Qid .
op getType : Constant -> Type . op getType : Variable -> Type .

Then a term is constructed in the usual way, by applying an operator symbol
to a list of terms.

subsorts Constant Variable < Term .

op _[_] : Qid TermList -> Term [ctorl]

subsort Term < TermList .

op _,_ : TermList TermList -> TermList [ctor assoc]

34

Since terms in the module META-LEVEL can be metarepresented just as terms
in any other module, the representation of terms can be iterated. For example,
the term s (N:Nat) + 0 in the module NAT in Section 5.4, specifying natural
numbers in Peano notation, is metarepresented by

> +_[’s_[’N:Nat], ’0.Nat],
and meta-metarepresented by

Y A0 _+_.Qid, ¢, _[°_¢[_“1[’’s_.Qid, ’’N:Nat.Variablel],
’70.Nat.Constant]]

5.4 Representing Modules

Functional and system modules are metarepresented in a syntax very simi-
lar to their original user syntax. The main differences are that: (1) terms in
equations, membership axioms, and rules are now metarepresented as we have
already explained in the previous section; (2) in the metarepresentation of
modules we follow a fixed order in introducing the different kinds of declara-
tions for sorts, subsort relations, equations, etc., whereas in the user syntax
there is considerable flexibility for introducing such different declarations in an
interleaved and piecemeal way; (3) there is no need for variable declarations;
and (4) sets of identifiers—used in declarations of sorts—are represented as
sets of quoted identifiers built with an associative and commutative operator

- =

The syntax for the top-level operators representing functional and system
modules is as follows:

sorts FModule Module .
subsort FModule < Module .

OpDeclSet MembAxSet EquationSet —-> FModule [ctor]

op fmod_is_sorts_. endfm : Qid ImportList SortSet SubsortDeclSet

op mod_is_sorts_. endm : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet RuleSet -> Module [ctor]

Without going into all the syntactic details, we show only the operators used
to represent conditions, equations, and rules.

sorts EqCondition Condition .

subsort EqCondition < Condition .

ops (_=_) (_:=_) : Term Term -> EqCondition [ctor]
op _:_ : Term Sort -> EqCondition [ctor]

35

op _=>_ : Term Term -> Condition [ctor]
op _/_ : EqCondition EqCondition -> EqCondition [ctor assoc]
op _/_ : Condition Condition -> Condition [ctor assoc]

sorts Equation EquationSet .
subsort Equation < EquationSet .

op eq_=_. : Term Term -> Equation [ctor]
op ceq_=_if_. : Term Term EqCondition -> Equation [ctor]
op none : -> EquationSet [ctor]

op __ : EquationSet EquationSet -> EquationSet
[ctor assoc comm id: none]

sorts Rule RuleSet .
subsort Rule < RuleSet .

op r1[_1:_=>_. : Qid Term Term -> Rule [ctor]

op crl[_]: =>_if . : Qid Term Term Condition -> Rule [ctor]
op none : -> RuleSet [ctor]

op __ : RuleSet RuleSet -> RuleSet [ctor assoc comm id: none]

As a simple example, the metarepresentation of the module on the left is the
term displayed on the right, so that the reader can appreciate the similarity
between both notations:

fmod NAT is fmod °’NAT is

nil

sorts ’Zero ; ’Nat .
subsort ’Zero < ’Nat

sorts Zero Nat
subsort Zero < Nat .

op 0 : => Zero [ctor] . op ’0

op s_ : Nat -> Nat [ctor]

op _+_ : Nat Nat -> Nat
[comm]

vars N M : Nat

eq O+ N=0N.

eq (s N) + M=s (N + M)

: nil -> ’Zero [ctorl]
op ’s_ : ’Nat -> ’Nat [ctor]
op ’_+_ : ’Nat ’Nat -> ’Nat

[comm]
none

eq ’_+_[’0.Nat, ’N:Nat] = ’N:Nat .
eq ’_+_[’s_[’N:Nat], ’M:Nat]

= ’s_[’_+_[’N:Nat, ’M:Nat]]
endfm endfm

Since NAT has no list of imported submodules and no membership axioms,
those fields are filled, respectively, with the constants nil of sort ImportList,
and none of sort MembAxSet.

Note that terms of sort Module can be metarepresented again, yielding then a
term of sort Term, and this can be iterated an arbitrary number of times. This
is in fact necessary when a metalevel computation has to operate at higher
levels. A good example is the inductive theorem prover described in [17], where
modules are metarepresented as terms of sort Module in the inference rules for
induction, but they have to be meta-metarepresented as terms of sort Term

36

when used in strategies that control the application of the inductive inference
rules.

5.5 Descent Functions

The module META-LEVEL has several built-in descent functions that provide
useful and efficient ways of reducing metalevel computations to object-level
ones.

The operation metaReduce takes as arguments the representation of a module
R and the representation of a term ¢ in that module.

op metaReduce : Module Term -> [ResultPair]
op {_,_} : Term Type -> ResultPair [ctor]

It returns the representation of the fully reduced form of the term ¢ using the
equations in R, together with its corresponding sort or kind.

The interpreter function for metaReduce(R,?) rewrites the term ¢ to normal
form using only the equations in R, and does so according to the operator
evaluation strategies (see the end of Section 2.2 and [33]) declared for each
operator in the signature of R, which by default is bottom-up for operators
with no such strategies declared. In other words, the interpreter strategy for
this function coincides with that of the reduce command in Maude, that is,

metaReduce(R,?) = Iy, 4.(R.t, reduce).

The operation metaRewrite has syntax
op metaRewrite : Module Term MachineInt -> [ResultPair]

It is entirely analogous to metaReduce, but instead of using only the equa-
tional part of a module it now uses both the equations and the rules to rewrite
the term using Maude’s default strategy. Its first two arguments are the repre-
sentations of a module R and of a term ¢, and its third argument is a natural
number n. Its result is the representation of the term obtained from ¢ after
at most n applications of the rules in R using the strategy of Maude’s de-
fault interpreter, which applies the rules in a top-down rule fair way. When
the value 0 is given as the third argument, no bound is given to the number
of rewrites, and rewriting proceeds to the bitter end. Again, metaRewrite is
a paradigmatic example of a descent function; its corresponding interpreter
strategy is that of the rewrite command in Maude, that is,

metaRewrite(R,t,n) = Iy, 40(R, t, revrite [n]).

37

The operation metaApply has syntax:

op metaApply : Module Term Qid Substitution Machinelnt
-> [ResultTriple]

The first four arguments are representations in META-LEVEL of a module R, a
term ¢t in R, a label [of some rules in R, and a set of assignments (possibly
empty) defining a partial substitution o for the variables in those rules. The
last argument is a natural number n used to enumerate all possible matches
(due to the presence of structural axioms for operators or several rules with the
same label [). metaApply then returns a triple of sort ResultTriple consisting
of a term, with the corresponding sort or kind, and a substitution. The syntax
for substitutions and for results is

subsort Assignment < Substitution .

op _<-_ : Qid Term -> Assignment [ctor]
op none : —> Substitution [ctor]
op _;_ : Substitution Substitution -> Substitution

[ctor assoc comm id: nonel
op {_,_,_} : Term Type Substitution -> ResultTriple [ctorl]

The operation metaApply is evaluated as follows:

(1) the term ¢ is first fully reduced using the equations in R;

(2) the resulting term is matched against all rules with label [partially in-
stantiated with o, with matches that fail to satisfy the condition of their
rule discarded;

(3) the first n successful matches are discarded; if there is an (n+1)th match,
its rule is applied using that match and the steps 4 and 5 below are taken;
otherwise an error is returned;

(4) the term resulting from applying the given rule with the (n+ 1)th match
is fully reduced using the equations in R;

(5) the triple formed using the constructor {_, _, _} whose first element is the
representation of the resulting fully reduced term, whose second element
is the representation of the corresponding type, and whose third element
is the representation of the match used in the reduction is returned.

The interpreter strategy associated to metaApply(R,%,[,,n) is not that of a
user-level command in the Maude interpreter. It is instead a built-in strategy
internal to the interpreter that attempts one rewrite at the top as explained
above.

The operation metaXapply, with syntax
op metaXapply : Module Term Qid Substitution MachineInt MachinelInt

MachineInt -> [Result4Tuple]
op {_,_,_,_} : Term Type Substitution Context -> Result4Tuple [ctor]

38

works as metaApply but using matching with extension (see [15, Section 5.8])
and in any possible position, not only at the top. The first two integer argu-
ments indicate, respectively, the minimum and maximum depth in the flat-
tened term (with respect to its associative or associative-commutative opera-
tors) where the application of the rule can take place. The last integer argu-
ment enumerates the solutions, since there can be different such rewrites with
different substitutions and at different positions. The result has an additional
component, giving the context inside the given term, where the rewriting has
taken place. Contexts (terms with a single “hole”) are defined as follows: ®

subsort Context < CTermList .
subsorts TermlList CTermList < GTermList .

op [l : -> Context [ctor]
op _,_ : TermList CTermList -> CTermList [ctor assoc]
op _,_ : CTermList TermList -> CTermList [ctor assoc]

op _[_] : Qid CTermList -> Context [ctor]

The function metaMatch intuitively tries to match at the top two given terms
in a module. The last argument is used to enumerate possible matches. If
the matching attempt is successful, the result is the corresponding substitu-
tion. The generalization to metaXmatch is analogous to the generalization to
metaXapply.

op metaMatch : Module Term Term MachineInt -> [Substitution]

op metaXmatch : Module Term Term MachineInt MachineInt
MachineInt -> [MatchPair]

op {_,_} : Substitution Context -> MatchPair [ctorl]

5.6 Parsing, Pretty Printing, and Sort Functions

Besides the descent functions already discussed, META-LEVEL provides several
other functions that naturally belong to the universal theory and could have
been equationally axiomatized in such a theory. However, for efficiency reasons
they are provided as built-in functions. These functions allow parsing and
pretty printing a term in a module at the metalevel, and performing efficiently
a number of useful operations on the sorts declared in a module’s signature.

The function metaParse takes as arguments the representation of a module,
the representation of a list of tokens as a list of quoted identifiers, and, op-
tionally, a sort or kind. It returns the metarepresentation of the parsed term

8 Sort CTermList represents lists of terms with exactly a “hole” in the whole list,
and sort GTermList is only needed for the assoc attribute, which is necessary, to
make sense.

39

of that list of tokens for the signature of the module, which is assumed to be
unambiguous.

The function metaPrettyPrint takes as arguments the representation of a
module M and the representation of a term ¢. It returns a list of quoted
identifiers that encode the string of tokens produced by pretty printing ¢ in
the syntax given by M. In the event of an error an empty list is returned.

The operations on sorts provide commonly needed functions on the poset of
sorts of a module in a built-in way at the metalevel. For example, the function
leastSort takes as arguments the representations of a module and a term and
computes the (representation of the) least sort of that term in the module,
while the Boolean expression sameKind (M ,5,s’) is true if and only if the
sorts s and s’ belong to the same kind in the module M.

5.7 Extensions of META-LEVEL

In metalevel computations it is very convenient to be able to refer by name to
the metarepresentations of modules already entered into the system. To make
this possible, Maude allows importation declarations of the form

protecting META-LEVEL(My,...,M,)

where My, ..., M, is a list of names of user-defined modules. With this dec-
laration, new constants M;,..., M, of sort Module are declared, and new
equations making each constant M; equal to the metalevel representation of
the module with name M; (declared previously by the user) are added, for
t = 1...n. Thus, after entering the module NAT in Section 5.4 above, we can
declare a module that protects META-LEVEL (NAT) and defines a function to
extract the set of operator declarations of a functional module as follows:

fmod META-NAT is
protecting META-LEVEL(NAT) .
op getOpDeclSet : FModule -> OpDeclSet .

var QI : Qid . var IL : ImportList .
var SS : QidSet . var SSDS : SubsortDeclSet .
var 0ODS : OpDeclSet . var MAS : MembAxSet .

var EqS : EquationSet .
eq getOpDeclSet(fmod QI is IL sorts SS . SSDS 0DS MAS EqS endfm)
= 0DS .
endfm

Then we can apply this function to the constant NAT, which in META-NAT has
been declared to be equal to the metarepresentation of the user-defined module

40

NAT, as follows:

Maude> red getOpDeclSet (NAT) .
Result OpDeclSet :
op ’0 : nil -> ’Zero [ctor]
op ’s_ : ’Nat -> ’Nat [ctor]
op ’_+_ : ’Nat ’Nat -> ’Nat [comm]

In Maude, we can use the up function to avoid the cumbersome task of explic-
itly writing the metarepresentation of a term or of a module. For example, to
obtain the metarepresentation of the term s 0 in the module NAT, mathemat-
ically denoted s 0, we can write

Maude> red up(NAT, s 0)
Result Term : ’s_[’0.Nat]

Note that the module name is the first argument of the up function, with the
term of that module to be metarepresented as the second argument. Since the
same term can be parsed in different ways in different modules, and therefore
can have different metarepresentations depending on the module in which it
is considered, the module to which the term belongs has to be used to obtain
the correct metarepresentation. Note also that the above reduction only makes
sense at the metalevel, that is, in a module importing the module META-LEVEL.
Moreover, by evaluating in any module importing the module META-LEVEL the
up function with the name of any previously declared module as argument,
we obtain the metarepresentation of such a module.

The result of a metalevel computation that may use several levels of reflection
can be a term or module metarepresented one or more times, which may be
hard to read. To display the output in a more readable form we can use the
down command, which is in a sense inverse to up, since it gives us back the
term from its metarepresentation. The down command takes two arguments.
The first argument is the name of the module to which the term to be re-
turned belongs. The metarepresentation of the desired output term should be
the result of the command given as second argument. Thus, we can give the
following command:

Maude> down NAT :
red-in META-NAT : metaReduce (NAT, up(NAT, O + s 0))
Result Nat : s O

The use of up and down can be iterated with as many levels of reflection as
we wish.

41

6 Internal Strategies

As already explained, system modules in Maude are rewrite theories that do
not need to be Church-Rosser and terminating. Therefore, we need to have
good ways of controlling the rewriting inference process—which in principle
could not terminate or could go in many undesired directions—by means of
adequate strategies. This need has been addressed in other languages; for ex-
ample, the ELAN language provides a strategy language to guide the rewrites
and allows user extensions for such a language [5,6,4]. In Maude, thanks to
its reflective capabilities, strategies are made internal to the logic, that is,
they are defined by rewrite rules in a normal module in Maude, and can be
reasoned about as with rules in any other module.

In fact, there is great freedom for defining many different types of strategies,
or even many different strategy languages inside Maude. This can be done
in a completely user-definable way, so that users are not limited by a fixed
and closed particular strategy language. A general methodology for defining
internal strategy languages for reflective logics is introduced in [12]. In general,
strategies for controlling the application of the rules are defined by using
metaReduce, metaApply, etc., as building blocks, which are then combined to
obtain more complex strategies.

Let us illustrate some of the possibilities with some strategies controlling the
execution of the rule labelled switch in the following module SWITCH.?

mod SWITCH is
protecting ARRAY(Int)
vars I J X Y : Machinelnt .
var L : List(Tuple(Int, Int))
crl [switch] : (I, X) L (J, Y) => (I,) L (J, X)
if (I, X) L (J, Y) : NeArray(Int)
endm

The switch rule rewrites a term of sort Array (Int) in the module ARRAY (Int)
to another term in which two of the elements in it have been interchanged.
Note that the condition in the rule ensures that it is only applied to valid
integer arrays, resulting in another valid integer array; however, this rule is
different from the rule sort in Sections 3.2 and 4.5, because it does not check
whether the elements are out of place or not.

9 The reader should compare this module with the modules INT-SORTING in Sec-
tion 3.2 and SORTING(X :: TOSET) in Section 4.5. In particular, the imported
module ARRAY(Int) is obtained as an instantiation of the parameterized module
ARRAY (X) in Section 4.5, and is equivalent to the module INT-ARRAY discussed in
Section 2.3.

42

The system thus described is highly concurrent, because the switch rule may
be applied concurrently to many different positions in an array. Moreover,
this rule gives rise to nondeterministic and nonterminating computations, and
therefore we need to control by means of strategies the way in which it is
applied.

Let us begin by illustrating the use of metaApply for rewriting a term of sort
Array(Int) by applying the rule switch once at the top of the term with-
out any specific substitution (argument none representing the empty substi-
tution) and using the first possible match (last argument 0). The operation
getTerm is the selector extracting the first component from either a pair of
sort ResultPair or a triple of sort ResultTriple (see Section 5.5).

Maude> red getTerm(metaApply(SWITCH,
(1, 5)(2, 4)(3, 3), ’switch, none, 0))
result Term : (1, 3)(2, 4)(3, 5)

This simple application of the rule does not have much interest by itself, but
shows how it can be used for building more interesting strategies. For example,
in this case we see how an array can be rewritten in several different ways,
even considering a single rule and rewriting only at the top of the term. The
function findAl1lRews in the module ALL-ONE-STEP-REWRITES below finds
all possible one-step rewrites of a term using a given rule. More precisely,
findAl1Rews (M ,T',L), with M a term of sort Module, 1" a term of sort
Term metarepresenting a term of a sort in the module metarepresented by M,
and L the label of a rule in M, returns the set of terms resulting from the
application of the rule L in all possible different ways on term 7" in M by
using metaXapply. °

fmod SET(X :: TRIV) is
sort Set(X)
subsort X.Elt < Set(X)
op mt : —> Set(X) [ctor]
op _&_ : Set(X) Set(X) -> Set(X) [ctor assoc comm id: mt]
var E : X.E1t .
eqE&E=E .
endfm

view Term from TRIV to META-LEVEL is
sort El1t to Term .
endv

10 The constant maxMachineInt is the largest integer in a given Maude imple-
mentation. It is guaranteed (due to virtual memory/address space limitations)
that in a nondistributed implementation of Maude a term of depth greater than
maxMachineInt cannot be built without running out of swap space.

43

fmod ALL-ONE-STEP-REWRITES is
protecting SET(Term)

op findAllRews : Module Term Qid -> Set(Term) .
op findAl1RewsAux : Module Term Qid MachineInt -> Set(Term)

var T : Term . var M : Module .
var L : Qid . var N : Machinelnt .

eq findAllRews(M, T, L) findAllRewsAux(M, T, L, 0)
eq findAllRewsAux(M, T, L, N)
= if metaXapply(M, T, L, none, O, maxMachineInt, N)
:: Result4Tuple
then getTerm(metaXapply(M, T, L, none, O, maxMachineInt, N))
& findAllRewsAux(M, T, L, N + 1)
else mt
fi .
endfm

A call to function findAl11Rews with the metarepresentations of the SWITCH
module, of an array, and of the rule label switch gives back all the terms
resulting from the application of such a rule in all possible ways on the term.

Maude> red findAllRews(SWITCH, (1, 5)(2, 4)(3, 3), switch)
result Set(Term)
(1, 3)(2, 4)(@3, 5) & (1, 4)(2, 5)(3, 3) & (1, 5)(2, 3)(3, 4)

It is easy to extend this specification in order to get not only the one-step
rewrites, but also to get all rewrites, perhaps up to a given depth, and not
only by the application of a single rule, but by considering any rule in a given
module. We can even carry on some kind of model checking analysis. This is
precisely the idea used by Denker, Meseguer, and Talcott in [21] for analyzing
different communication protocols by means of exhaustive execution strategies
that achieve a form of model checking analysis of the state space.

Another way of controlling the application of the rules consists in choosing
some of the possible rewriting paths that can be followed by the application
of the rules to a term. For example, we can consider different strategies for
the controlled application of the rule switch above for sorting integer arrays.
In this case, such strategies correspond to the specification of different sorting
algorithms guiding where the switch rule should be applied at each point of
the computation.

In the module INSERT-STRATEGY below, we give a strategy for sorting integer
arrays by following the insertion sort algorithm. This strategy consists in par-
titioning the array in two regions: a first part which is sorted, and a second

44

one which is unsorted. Initially, the entire array is unsorted, and, at each step,
the strategy takes the first element of the unsorted part and places it into its
correct position in the sorted region. This insertion requires the shifting of
elements to make room for the element being inserted.

The function insert takes a term metarepresenting the nonempty array to
be sorted, and calls an auxiliary function, named insertAux, which takes in
addition the positions of the first and last elements of the array. Its second
and third arguments are indexes used to refer to particular elements in the
array. More precisely, the second argument represents the position of the first
element in the unsorted region, that is, the element to be inserted next, and
the third argument is used to go through the sorted region looking for the
correct position for such an item.

The function metaReduce is used for reducing several expressions at the met-
alevel. For example, the term T being rewritten is used in insert for computing
the range of the positions of the array, which are passed as arguments in the
initial call to the insertAux function, or for evaluating the Boolean condition
in which two elements in different positions are compared in order to decide
whether it is worth to interchange them or not.

Note the form of the arguments of metaReduce in these calls. We use a com-
bination of the overline notation with the actual metarepresentation of a term
in order to simplify the text of the specification as much as possible. For ex-
ample, the term ’> _+_[’1ow[T], 1] is a simplified representation of the term
> _+_[’1low[T], ’1.MachineInt], where T is a variable of sort Term with value
the metarepresentation of an array. Such a term is the metarepresentation of
low(A) + 1, with A the array metarepresented by T, which is used for calcu-
lating the successor of the first position of the array being sorted.

The function metaXapply is called with an explicit substitution as its fourth
argument in order to appropriately instantiate the variables I and J used in
the switch rule, corresponding to the positions whose values must be inter-
changed.

fmod INSERT-STRATEGY is
protecting META-LEVEL (SWITCH) .

op insert : Term -> Term .
op insertAux : Term Term Term Term Term -> Term .

vars T K1 K2 L H : Term .
eq insert(T)

= insertAux(T, ’_+_[’low[T], 11, ’>_+_[’low[T], 11,
low[T], ’high[T])

45

eq insertAux(T, K2, K1, L, H)
= if getTerm(metaReduce(SWITCH, ’_>_[K1, L])) == true
then if getTerm(

metaReduce (SWITCH,
> [P ¢[_41LT, °_-_[K1, 1171, ’_°[_°1[T, K111))
=/= true
then insertAux(T, K2, ’_-_[K1, 1], L, H)
else insertAux(
getTerm(

metaXapply (SWITCH, T, ’switch,
((’J:MachineInt <-
getTerm(metaReduce (SWITCH, K1)));
(’I:MachineInt <-
getTerm(metaReduce (SWITCH, ’_-_[K1, 11)))),
0, maxMachineInt, 0)),
K2, ’_-_[K1, 11, L, H)
fi
else if getTerm(metaReduce(SWITCH, ’_<_[K2, H])) == true
then insertAux(T, ’_+_[K2, 11, ’_+_[K2, 11, L, H)
else T
fi
fi .
endfm

Notice that, although the rule switch in module SWITCH gives rise to non-
deterministic and nonterminating computations, its controlled application by
means of the strategy insert in the module INSERT-STRATEGY is deterministic
and terminating.

Maude> red insert((1,5)(2,4)(3,3)(4,2)(5,1))
result Term : (1,1)(2,2)(3,3)(4,4)(5,5)

We can specify other sorting algorithms following the same approach. For ex-
ample, the module QUICKSORT-STRATEGY in Appendix A.2 defines the strategy
function quicksort following the classical quicksort algorithm. Given a func-
tion partition, which partitions the array in those elements smaller than a
chosen pivot and those greater than or equal to the pivot, the quicksort al-
gorithm consists in calling partition with the fragment of the array being
considered at that point, and then making recursive calls to itself with each
of the fragments in which the selected pivot has divided the array.

46

7 Implementation

The Maude system is built around the Core Maude interpreter, which accepts
module hierarchies of (unparameterized) functional and system modules with
user-definable mixfix syntax. It is implemented in C++ and consists of two
parts: the rewrite engine (Section 7.1) and the mixfix front end (Section 7.2).
Two additional key components are the MSCP parser (Section 7.3) and the
Full Maude language extension built on top of the Core Maude interpreter
(Section 7.4).

7.1 The Rewrite Engine

The design of Maude’s rewrite engine has a number of objectives. Specifically
it should:

look and feel like an interpreter;

be capable of supporting user interrupts and source level tracing;

be extensible with new equational theories and new built-in operators;
be general purpose and not contain Maude-specific code or features.

The first three objectives all but rule out a number of performance enhancing
techniques such as:

compilation to native machine code (or C/C++);

compilation to a fixed architecture abstract machine;

program transformations and partial evaluation; and

tight coupling between the matching/replacement/normalization code for
different equational theories.

The design chosen is essentially a highly modular semicompiler where the
most time consuming run-time tasks are compiled into a system of decision
diagrams and automata which are interpreted at run time. It is realized as a
C++ class library.

To enhance maintainability and extensibility, the rewrite engine is highly
structured, with its classes being grouped into ten modules which themselves
are organized into four layers, with inner layers having no knowledge of, or
dependency on, classes in outer layers. The overall architecture is shown in
Figure 2, where the arrows represent class derivation.

Layer 1 consists of a single module Utility, containing classes and class tem-
plates which provide a number of general-purpose data types such as vectors,
maps, sets, graphs, and digraphs, together with some more specialized data

47

Theory
Interface

| Variable

Free ACU CuUl
AU Theory
Theory Theory Theory

NA Theory | !

| Builtin |

Fig. 2. Architecture of Maude’s rewrite engine

types such as Diophantine equations and Tarjan’s union-find data structure.

Layer 2 Consists of three modules. The Theory Interface module provides
abstract interfaces to basic objects whose concrete realization will differ for
different equational theories such as: symbols, term and DAG nodes, lefthand
side automata (for matching), righthand side automata (for constructing and
normalizing righthand side and condition instances), matching subproblems,
and matching extension information. The Core module contains classes for
basic objects that are independent of the different equational theories such as:
sorts, connected sort components, equations, membership axioms, rules, con-
junctions and disjunctions of matching subproblems, and substitutions. The
Variable module contains classes derived from those in the Theory Interface.
Variables are treated as a very special equational theory in that classes in
most other modules are permitted to know about and depend on their special
properties.

Layer 3 consists of modules that implement particular equational theories.
Each consists of classes derived from those in the Theory Interface. Currently
there are five such modules: The Free Theory module implements the free
theory whose operators have no equational attributes; this is the only theory

48

that currently supports many-to-one matching via discrimination nets. The
ACU Theory module implements the associative-commutative and associative-
commutative-identity theories. The AU Theory module implements the theo-
ries that contain associativity and possibly left and/or right identity. The CUI
Theory module implements all theories that are formed by nonempty combi-
nations of commutativity, left identity, right identity, and idempotence. The
purpose of the NA Theory is to provide a convenient interface for plugging
in data types such as machine integers, strings, and floating point numbers
which have special machine level representations for performance reasons.

Layer 4 consists of a single module Builtin which contains classes for symbols
with special built-in semantics, and for term and DAG nodes which have
special internal representations. In keeping with our objective of having a
general-purpose rewrite engine, this module provides operators and data types
that are of general use in rewriting logic such as equality, sort tests, machine
integers, strings, and floating point numbers.

7.1.1 Performance

Although our design emphasizes generality, transparency, extensibility, and
maintainability, performance is not neglected. At the time of writing, typical
equational rewriting speeds are 0.69-2.98M free-theory rewrites/second and
93-319K AC rewrites per second on a highend Linux PC (667MHz Xeon with
256MB 133MHz SDRAM). The figure for AC rewriting is highly dependent
on the complexity of the AC patterns (AC matching is NP-complete) and
the size of the AC subjects. These results were obtained using fairly simple
linear and nonlinear patterns and large (hundreds of nested AC operators)
subjects. In mixed free/AC systems we have obtained speeds of more than 1M
rewrites/second.

Performance enhancing techniques used in the implementation include:

e Fixed size DAG nodes for in-place replacement.

e Full indexing for the topmost free function symbol layer of patterns; where
the patterns for some free symbol only contain free symbols this is equivalent
to matching a subject against all the patterns simultaneously.

e Use of greedy matching algorithms which attempt to generate a single match-
ing substitution as fast as possible for patterns and subpatterns that are
simple enough and whose variables satisfy certain requirements (such as
not appearing in a condition). If a greedy matching algorithm fails it may
be able to report that no match exists; but it is also allowed to report
‘undecided’; in which case the full matching algorithm must be used.

e Use of special-purpose matching automata to catch common subpatterns
and handle them in a particularly efficient way.

49

Use of a carefully-chosen normal form for the AC(U) theory, together with
sophisticated renormalization algorithms that make use of extra informa-
tion saved by the matcher to avoid costly comparisons and sorting where
possible.

Use of a Boyer-Moore style algorithm for matching under A(U) function
symbols.

Parse time analysis of sort information to avoid needless searching during
A(U) and AC(U) matching.

Parse time analysis of non-linear variables in patterns in order to propagate
constraints on those variables in an ‘optimal’ way and reduce the search
space.

e Global sort analysis to avoid unnecessary sort computations and tests.
e Compilation of sort information into ordered decision diagrams for fast in-

cremental computation of sorts at run time.
Efficient handling of matching with extension through a theory independent
mechanism that avoids the need for extension variables or equations.

7.2 The Mizfiz Frontend

The mixfix frontend contains all of the Maude-specific code in the system. It
contains:

A bison/flex-based parser for Maude’s surface syntax.
A grammar generator which generates the context-free grammar (CFG) for
the mixfix parts of Maude over the user’s signature.

e The MSCP parser for f-extended CFGs (discussed in Section 7.3 below).
e A mixfix pretty printer which is aware of precedences, gather patterns, and

various kinds of overloading.
A module system with lazy flattening and lazy reparsing (for when a module
with dependents is replaced).

e A fully reentrant debugger.
e Maude-specific built-in data types, such as those in the QID and META-LEVEL

modules.
File, directory, and line number management.

7.8 The MSCP Parser

The intrinsic characteristics of Maude—mainly, its metalanguage functional-
ity, its reflective nature, and its logical and semantic framework applications—
pose very strong requirements on the design of a parsing algorithm for the

20

language, since it has to fulfill the following constraints [60]:

e Interpreted parsing is required, since the syntax of modules is user-definable.

e Full context-free grammars must be used, and not only LALR models.

e A disambiguation mechanism, as the use of precedence values and gathering
patterns, that modify the grammatical power of nonterminal symbols, must
be available.

e Grammars are extended to incorporate bubbles [60]. Bubbles are the key
notion to implement syntactic reflection. Furthermore, bubble sorts are user-
definable.

e Techniques for error detection and error recovery must be supported.

e Efficiency is a main goal, as the parser is the surface of the rest of the
system, especially in metalevel computations.

The logical kernel of the current version of the parser is based on the SCP
parsing algorithm [59]. SCP is a bidirectional, bottom-up and event-driven
parser for unrestricted context-free grammars. The soundness and complete-
ness of SCP guarantees that the Maude version of SCP (MSCP) will generate
all the possible grammatical analyses for each term in a given signature. This
avoids some completeness problems detected in the OBJ3 parser.

MSCP is able to analyze (-extended CFGs (CFGs extended with bubbles and
precedence/gathering patterns) [60]. The MSCP parsing algorithm incorpo-
rates sophisticated error detection and error recovery mechanisms based on
the notions of partial derivability and adjacency, originally developed in SCP.

7.4 Full Maude

The full syntax of Maude explained and illustrated in this paper is not directly
supported by the Core Maude interpreter. Instead, it is supported by a sys-
tem extension called Full Maude [30,27] that is entirely written in Maude and
makes crucial use of Maude’s reflective capabilities. Specifically, all object-
oriented features, as well as all parameterized modules, theories, views, and
module expressions are supported in Full Maude. Essentially, Full Maude pro-
vides a rich and extensible module algebra of parameterized modules and mod-
ule composition in the Clear/OBJ style with important extensions to support
object-oriented modules. The key idea of its reflective design is to extend the
sort Module in META-LEVEL with new sorts corresponding to more general
kinds of modules and other constructs such as object-oriented modules, pa-
rameterized modules, theories, views, and so on. Then, all operations in the
module algebra are defined by equations and rewrite rules at the metelevel.

As mentioned above, all of Full Maude—including its grammar, user inter-
face, and internal functionality—has been formally specified in Maude using

ol

reflection. This formal specification is in fact its implementation. Our expe-
rience in this regard is very encouraging in several respects. Firstly, because
of how quickly it was possible to develop Full Maude. Secondly, because of
how easy it will be to maintain it, modify it, and extend it with new features
and new module operations [28]. Thirdly, because of the competitive perfor-
mance with which it can carry out complex module composition and module
transformation operations, that makes the user interaction quite reasonable.

8 Methodology, Tools, Applications, and Future

We first explain how Maude, together with an environment of formal analysis
and reasoning tools, can support a flexible range of formal methods. Then,
after giving a brief summary of the different kinds of applications developed
so far, we describe some near-future development concerning Mobile Maude.

8.1 Formal Methodology and Tools

The fact that rewriting logic specifications are executable allows us to have
a flexible range of increasingly stronger formal methods, to which a system
specification can be subjected, including the following:

(1) Formal specification. This process results in a first formal model of the
system, in which many ambiguities and hidden assumptions present in an
informal specification are clarified. A rewriting logic specification provides
a formal model in exactly this sense.

(2) Ezecution of the specification. Executable rewriting logic specifications
can be used directly for simulation and debugging purposes, leading to
increasingly better designs.

(3) Model-checking analysis. Errors in highly distributed and nondetermin-
istic systems not revealed by a particular execution can be found by a
model-checking analysis that considers all behaviors of a system from an
initial state, up to some level or condition.

(4) Narrowing analysis. By using symbolic expressions with logical variables,
one can carry out a symbolic model-checking analysis in which all behav-
iors not only from a single initial state, but also from the possibly infinite
set, of states described by a symbolic expression are analyzed.

(5) Formal proof. For highly critical properties it is also possible to carry out
a formal proof of correctness, which can be assisted by formal tools such
as those described below. Such properties can be expressed in rewriting
logic itself, or in an adequate modal or temporal logic.

52

The above methodology can be supported by formal tools. First of all, Maude
itself is a very versatile formal tool supporting methods 1-2 through its default
interpreter, and method 3 through reflective rewriting strategies that can an-
alyze the different concurrent computations from a given initial state checking
for desired properties. Method’s 4 narrowing analysis can be supported by
strategies and a rewriting specification of unification, but in the future it will
be more efficient to support unification in a built-in way.

In addition to the formal methods directly supported by Maude, one can
use Maude as a formal metatool [18] to build other formal tools supporting
other kinds of analysis and proof. As explained in [17,18,51], reflection and
the flexible uses of rewriting logic as a logical framework [41] are the key
features making it easy to develop such formal tools and their user interfaces.
The papers [18,57] give detailed accounts of a wide range of formal tools
that have been defined in Maude by different authors for different formalisms.
We focus here on Maude-specific tools, applicable to large classes of Maude
specifications, or extensions of such specifications; they include the following:

An Inductive Theorem Prover. Using the reflective features of Maude,
we have built an inductive theorem prover for equational logic specifica-
tions [17] that can be used to prove inductive properties of both CafeOB.J
specifications [23] and of functional modules in Maude. This tool can be
extended with reflective reasoning principles to reason about the metalogi-
cal properties of a logic represented in rewriting logic or, more generally, to
prove metalevel properties [2].

A Church-Rosser Checker. We have also built a Church-Rosser checker
tool [17] that analyzes equational specifications to check whether they sat-
isfy the Church-Rosser property. This tool can be used to analyze order-
sorted equational specifications [36] in CafeOBJ and in Maude. The tool
outputs a collection of proof obligations that can be used to either modify
the specification or to prove them. Extensions of this tool to perform equa-
tional completion and to check coherence of rewrite theories are currently
under development.

Real-Time Maude. Based on a notion of real-time rewrite theory that can
naturally represent many existing models of real-time and hybrid systems,
and that has a straightforward translation into an ordinary rewrite theory
58,56], Olveczky and Meseguer have developed an execution and analysis
environment for specifications of real-time and hybrid systems called Real-
Time Maude [57]. This tool translates real-time rewrite theories into Maude
modules and can execute and analyze such theories by means of a library
of strategies that can be easily extended by the user to perform other kinds
of formal analysis.

23

8.2 Applications

In general, the applications of Maude exploit the good features of rewriting
logic as a semantic framework and as a logical framework. Often, they use
in a crucial way Maude’s reflective capabilities. A detailed discussion of dif-
ferent applications is beyond the scope of this paper; we refer the reader to
[47,49,18,21,51,50] for recent accounts. As already explained in Section 8.1, an
important class of logical framework applications are formal metatool applica-
tions that use Maude to generate other formal tools [18]. Semantic framework
applications span a wide range of levels, including: formal specification of
architectural description languages, object-oriented designs, and distributed
middleware [49,50]; formal specification and analysis of network systems and
communication protocols [21,50]; and specification and programming of agent
and mobile systems (see [50,29] and Section 8.3). Of course, given the high
performance of the implementation, Maude is also an attractive very high-level
language for a number of programming applications. As explained below, we
expect Mobile Maude to further extend the range of such applications.

8.8 Mobile Maude

Maude can be used not only for specifying communication systems, but also for
programming them. We are currently advancing the design of Mobile Maude
[29]. This is an extension of Maude supporting mobile computation that uses
reflection in a systematic way to obtain a simple and general declarative mo-
bile language design. The two key notions are processes and mobile objects.
Processes are located computational environments where mobile objects can
reside. Mobile objects can move between different process in different loca-
tions, and can communicate asynchronously with each other by means of
messages. Each mobile object contains its own code—that is a rewrite the-
ory R—metarepresented as a term R. In this way, reflection endows mobile
objects with powerful “higher-order” capabilities within a simple first-order
framework.

We expect that Mobile Maude will have good support for secure mobile com-
putation for two reasons. Firstly, mobile objects will communicate with each
other and will move from one location to another using state-of-the-art en-
cryption mechanisms. Secondly, because of the logical basis of Mobile Maude,
we expect to be able to prove critical properties of applications developed in it
with much less effort than what it would be required if the same applications
were developed in a conventional language such as Java.

o4

9 Maude Versions: Past, Present, and Future

As explained in the introduction, this paper has presented all the main Maude
concepts in a version-independent way, without pointing out for each language
feature in which version it was introduced. Table 1 summarizes this informa-
tion, and also distinguishes at the same time between the Core Maude features,
and the additional features provided in Full Maude.

Version 1 of Maude was released in January 1999, while Version 2 was designed
in the summer of 2000; most of its features are already implemented at the
time of writing. The last row in the table summarizes several features that
have been discussed as desirable for future versions, but that are not going to
be part of the release of Version 2 of Maude.

A More details of some examples

A.1 CCS Syntax

fmod ACTION is
protecting QID .
sorts Label Act
subsorts Qid < Label < Act .

op tau : -> Act [ctor] . =**xx silent action
op “_ : Label -> Label [ctorl]
var N : Label .
eq " " N=N.
endfm

fmod PROCESS is
protecting ACTION .
sorts ProcessId Process .
subsorts Qid < ProcessId < Process .

op 0 : -> Process [ctor]
*%*x inaction

op _._ : Act Process -> Process [ctor]
**x* prefix

op _+_ : Process Process -> Process [ctor assoc comm]
% summation

op _l_ : Process Process -> Process [ctor assoc comm]
% parallel composition

op __ : Process Label -> Process [ctor]

*** restriction
op _[_/_1 : Process Label Label -> Process [ctor]

35

Core Maude

Full Maude

Version
1

functional modules
system modules
conditions: single equation
module hierarchies
reflection (metalevel)
internal strategies

metaReduce
descent functions metaRewrite

metaApply

Boolean values
predefined data types ¢ quoted identifiers
machine integers

object-oriented modules
parameterized modules
theories

views

module renaming

tuples

up/down commands

Version
2

explicit use of kinds

new variable syntax

memberships
equations

matching equations
rewrites

general conditions

metaXapply
more descent functions metaMatch

metaXmatch

natural numbers
floating point numbers
strings

more predefined
data types

built-in object-oriented modules, including
TCP socket and file system interfaces

fair rewriting for system and
object-oriented modules

rewrite search and LTL model-checking

sublanguage compiler
KTEX pretty printing

parameterized theories

parameterized views

view composition

view lifting

Future

unification

narrowing

built-in strategy language
foreign language interface
user-definable lexical syntax
GUI support

additional operator attributes
additional compiler support

Table 1

Language Features

26

*x** relabelling: [b/a] relabels "a" to "b"
endfm

fmod CCS-CONTEXT is
protecting PROCESS .
sort Context .
op _=def_ : ProcessId Process -> Context [ctor]
op nil : -> Context [ctor]
op _&_ : Context Context -> [Context]
[ctor assoc comm id: nil]
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context -> [Process]
op not-defined : -> [Process] [ctor]
op context : -> Context .
vars X X’ : ProcessId . var P : Process .
vars C C’ : Context .

cmb (X =def P) & C : Context if not(X definedIn C)

eq X definedIn nil = false .

ceq X definedIn C = (X == X’) or (X definedIn C’)
if (X’ =def P) & C’ :=C .

eq def (X, nil) = not-defined .

ceq def(X, C) = P if (X =def P) & C’ :=C .

ceq def (X, C) = def(X, C?)
if (X’ =def P) & C’> :=C /\ X =/= X’

endfm

A.2 Quicksort Strategy

The following module QUICKSORT-STRATEGY defines the quicksort strategy
function, which follows the classical quicksort algorithm for sorting. There is an
auxiliary function quicksortAux taking two additional arguments, namely the
positions of the first and last elements to be considered by the function, that
is, the limits of the fragment being considered in each call. There is another
auxiliary function partition, which takes as pivot the first of the elements
in the fragment of the array being considered, and returns a pair of terms
(of sort Tuple(Term, Term)) which metarepresent, respectively, the resulting
array and the position of the pivot element in it, in such a way that all the
elements before such a position are smaller than the pivot, and all the elements
after it are greater than or equal to the pivot. The position of the pivot in the
resulting array is used by the function quicksortAux for making the recursive
calls. Thus, given a fragment with first position L and last position H, and
with P the position of the pivot after the call to partition, the recursive calls
will be made with fragments L, P — 1 and P + 1, H. Note that the module

o7

expression TUPLE[2] (Term, Term) provides a sort Tuple(Term, Term) with
constructor (_,_), and with projection functions p1_ and p2_.

fmod QUICKSORT-STRATEGY is
protecting META-LEVEL(SWITCH) + TUPLE[2] (Term, Term)

op quicksort : Term -> Term .
op quicksortAux : Term Term Term -> Term .
op partition : Term Term Term Term -> Tuple(Term, Term)

vars TP L H : Term .
eq quicksort(T) = quicksortAux(T, ’low[T], ’high[T])

eq quicksortAux(T, L, H)
= if getTerm(metaReduce(SWITCH, ’_>_[L, H])) == true
then nil
else if getTerm(metaReduce(SWITCH, ’_==_[L, H])) == true
then > (_“,_9)L
getTerm(metaReduce (SWITCH, ’_‘[_‘]1[T, L1)), L]
else ’__[quicksortAux(pl partition(T, L, ’_+_[L, 11, H),
L,’_-_[p2 partition(T, L, ’_+_[L, 11, H), 11),
YO, _9)[p2 partition(T, L, ’_+_[L, 11, H),
»_‘[_‘1[p1 partition(T, L, ’_+_[L, 11, H),
p2 partition(T, L, ’_+_[L, 11, H)1],
quicksortAux(
pl partition(T, L, ’_+_[L, 11, H),
’_+_[p2 partition(T, L, ’_+_[L, 11, H), 11, H)]1]
fi
fi .

eq partition(T, P, L, H)
= if getTerm(metaReduce(SWITCH, ’_>_[L, H])) == true
then if getTerm(metaReduce(SWITCH, ’_<_[P, H])) == true
then (getTerm(*** move the pivot to position H
metaXapply (SWITCH, T, ’switch,
((’I:MachineInt <-
getTerm(metaReduce (SWITCH, P)));
(’J:MachineInt <-
getTerm(metaReduce (SWITCH, H)))),
0, maxMachineInt, 0)), H)
else (T, P) **%*x The pivot is the biggest element
fi
else if getTerm(
metaReduce (SWITCH, > _>_[’_°“[_“][T, P1,°_“[_“]1[T, L11))
== true
then **%x the element at L is smaller than the pivot

28

partition(T, P, ’_+_[L, 1], H)
else if getTerm(

metaReduce (SWITCH,
d_<=_[_‘[_1[T, P1, >_“[_°1LT, HI1))
== true
then *** the element at H is greater than the pivot
partition(T, P, L, ’_-_[H, 11)
else partition(
getTerm(

metaXapply (SWITCH, T, ’switch,
((’I:Machinelnt <-
getTerm(metaReduce (SWITCH, L)));
(’J:MachineInt <-
getTerm(metaReduce (SWITCH, H)))),
0, maxMachineInt, 0)),
P, ’_+_[L, 11, ’>_-_[H, 11)
fi
fi
fi .

endfm

Acknowledgements

We would like to thank David de Frutos, Miguel Palomino, Alberto Verdejo,
and the anonymous referees for all their helpful comments to previous versions
of this paper.

References

1]

3]

E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner, editors. Algebraic
Foundations of Systems Specification. IFIP State-of-the-Art Reports. Springer-
Verlag, 1999.

D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical
framework. In S. Kapoor and S. Prasad, editors, Proceedings Twentieth
Conference on the Foundations of Software Technology and Theoretical
Computer Science, New Delhi, India, December 13-15, volume 1974 of Lecture
Notes in Computer Science, pages 55—80. Springer-Verlag, 2000.

J. Bergstra and J. Tucker. Characterization of computable data types by means
of a finite equational specification method. In J. W. de Bakker and J. van
Leeuwen, editors, Automata, Languages and Programming, Seventh Colloquium,
Noordwigkerhout, The Netherlands, volume 81 of Lecture Notes in Computer
Science, pages 76-90. Springer-Verlag, 1980.

29

[4] P. Borovansky. Le Contrile de la Réécriture: Etude et Implantation d’un
Formalisme de Stratégies. PhD thesis, Université Henri Poincaré — Nancy I,
Oct. 1998.

[5] P. Borovansky, C. Kirchner, and H. Kirchner. Controlling rewriting by
rewriting. In Meseguer [46], pages 168-188. http://www.elsevier.nl/
locate/entcs/volume4.html.

[6] P. Borovansky, C. Kirchner, and H. Kirchner. Rewriting as a unified
specification tool for logic and control: The ELAN language. In M. P. A.
Sellink, editor, Second International Workshop on the Theory and Practice
of Algebraic Specifications, Amsterdam, The Netherlands, September 25-26,
1997, Electronic Workshops in Computing. Springer-Verlag, 1998. http:
//www.ewic.org.uk/ewic/workshop/view.cfm/ASFSDF-97.

[7] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An overview of ELAN. In Kirchner and Kirchner [39], pages 329-344. http:
//www.elsevier.nl/locate/entcs/volumel5.html.

[8] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN:
A logical framework based on computational systems. In Meseguer [46], pages
35-50. http://www.elsevier.nl/locate/entcs/volume4.html.

9] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35-132, 2000.

[10] R. Burstall and J. A. Goguen. The semantics of Clear, a specification language.
In D. Bjgrner, editor, Proceedings of the 1979 Copenhagen Winter School
on Abstract Software Specification, volume 86 of Lecture Notes in Computer
Science, pages 292-332. Springer-Verlag, 1980.

[11] G. Carabetta, P. Degano, and F. Gadducci. CCS semantics via proved transition
systems and rewriting logic. In Kirchner and Kirchner [39], pages 253-272.
http://www.elsevier.nl/locate/entcs/volumel5.html.

[12] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and
Metaprogramming Applications. CSLI Publications, 2000.

[13] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, and J. Meseguer.
Metalevel computation in Maude. In Kirchner and Kirchner [39], pages 3-24.
http://www.elsevier.nl/locate/entcs/volumel5.html.

[14] M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and J. F. Quesada. Maude: Specification and programming in rewriting
logic. Manual distributed as documentation of the Maude system, Computer
Science Laboratory, SRI International. http://maude.csl.sri.com/manual,
Jan. 1999.

[15] M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. A Maude tutorial. Tutorial distributed as documentation of the
Maude system, Computer Science Laboratory, SRI International. Presented
at the FEuropean Joint Conference on Theory and Practice of Software,

60

ETAPS 2000, Berlin, Germany, March 25, 2000. http://maude.csl.sri.com/
tutorial, Mar. 2000.

[16] M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. F. Quesada. Towards Maude 2.0. In Futatsugi [34], pages 297-318. http:
//www.elsevier.nl/locate/entcs/volume36.html.

[17] M. Clavel, F. Duran, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In Proceedings of the CafeOBJ Symposium
98, Numazu, Japan. CafeOBJ Project, Apr. 1998. http://maude.csl.sri.
com/papers.

[18] M. Clavel, F. Durdn, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a
formal meta-tool. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99
— Formal Methods, World Congress on Formal Methods in the Development
of Computing Systems, Toulouse, France, September 20-24, 1999 Proceedings,
Volume II, volume 1709 of Lecture Notes in Computer Science, pages 1684-1703.
Springer-Verlag, 1999.

[19] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In Meseguer [46], pages 65-89. http://www.elsevier.nl/locate/entcs/
volume4.html.

[20] M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 2001. This volume.

[21] G. Denker, J. Meseguer, and C. L. Talcott. Formal specification and analysis
of active networks and communication protocols: The Maude experience.
In D. Maughan, G. Koob, and S. Saydjari, editors, Proceedings DARPA
Information Survivability Conference and Ezposition, DISCEX 2000, Hilton
Head Island, South Carolina, January 25-27, 2000, pages 251-265. IEEE
Computer Society Press, 2000. http://schafercorp-ballston.com/discex/.

[22] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science. Volume B: Formal Models
and Semantics, chapter 6, pages 243-320. The MIT Press/Elsevier, 1990.

[23] R. Diaconescu and K. Futatsugi. CafeOBJ Report. The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification,
volume 6 of AMAST Series in Computing. World Scientific, 1998.

[24] R. Diaconescu, K. Futatsugi, and S. Iida. = Component-based algebraic
specification and verification in CafeOBJ. In J. M. Wing, J. Woodcock,
and J. Davies, editors, FM’99 — Formal Methods, World Congress on
Formal Methods in the Development of Computing Systems, Toulouse, France,
September 20-24, 1999 Proceedings, Volume II, volume 1709 of Lecture Notes
in Computer Science, pages 1644-1663. Springer-Verlag, 1999.

[25] R. Diaconescu, K. Futatsugi, M. Ishisone, T. Sawada, and A. T. Nakagawa.
An overview of CafeOBJ. In Kirchner and Kirchner [39], pages 75-88. http:
//www.elsevier.nl/locate/entcs/volumel5.html.

61

[26] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization.
In G. Huet, G. Plotkin, and C. Jones, editors, Proceedings of Workshop on
Logical Frameworks (Edinburgh, United Kingdom, May 1991), pages 83-130.
Cambridge University Press, May 1991.

[27] F. Durdn. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, Universidad de Ma4laga, Spain, June 1999. http:
//maude.csl.sri.com/papers.

[28] F. Durdn. The extensibility of Maude’s module algebra. In T. Rus, editor,
Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Towa, USA, May 20-27, 2000, Proceedings, volume
1816 of Lecture Notes in Computer Science, pages 422-437. Springer-Verlag,
2000.

[29] F. Durdn, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile
Maude. In D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents,
and Applications, Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, ASA/MA
2000, Zurich, Switzerland, September 1315, 2000, Proceedings, volume 1882 of
Lecture Notes in Computer Science, pages 73-85. Springer-Verlag, 2000.

[30] F. Durdn and J. Meseguer. An extensible module algebra for Maude.
In Kirchner and Kirchner [39], pages 185-206. http://www.elsevier.nl/
locate/entcs/volumel5.html.

[31] F. Durdn and J. Meseguer. Parameterized theories and views in Full Maude 2.0.
In Futatsugi [34], pages 319-337. http://www.elsevier.nl/locate/entcs/
volume36.html.

[32] S. Eker. Fast matching in combination of regular equational theories.
In Meseguer [46], pages 90-108. http://www.elsevier.nl/locate/entcs/
volume4.html.

[33] S. Eker. Term rewriting with operator evaluation strategy. In Kirchner
and Kirchner [39], pages 45-62. http://www.elsevier.nl/locate/entcs/
volumel5.html.

[34] K. Futatsugi, editor. Proceedings Third International Workshop on Rewriting
Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18—20,
2000, volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier,
2000. http://www.elsevier.nl/locate/entcs/volume36.html.

[35] F. Gadducci and U. Montanari. Comparing logics for rewriting: Rewriting logic,
action calculi and tile logic. Theoretical Computer Science, 2001. This volume.

[36] J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217-273, 1992.

[37] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software

62

Engineering with OBJ: Algebraic Specification in Action, Advances in Formal
Methods, chapter 1, pages 3-167. Kluwer Academic Publishers, 2000.

[38] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. STAM Journal of Computing, 15:1155-1194, Nov. 1986.

[39] C. Kirchner and H. Kirchner, editors. Proceedings Second International
Workshop on Rewriting Logic and its Applications, WRLA’98, Pont-a-
Mousson, France, September 1-4, 1998, volume 15 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1998. http://www.elsevier.nl/
locate/entcs/volumel5.html.

[40] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic
programming languages using computational systems. In V. Saraswat and
P. van Hentenryck, editors, Principles and Practice of Constraint Programming:
The Newport Papers, pages 133—-160. The MIT Press, 1995.

[41] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. Technical Report SRI-CSL-93-05, SRI International, Computer
Science Laboratory, Aug. 1993. To appear in D. Gabbay, editor, Handbook of
Philosophical Logic, Second Edition, Volume 6, Kluwer Academic Publishers,
2001. http://maude.csl.sri.com/papers.

[42] J. Meseguer. Rewriting as a unified model of concurrency. Technical Report
SRI-CSL-90-02, SRI International, Computer Science Laboratory, Feb. 1990.
Revised June 1990.

[43] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

[44] J. Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, pages 314-390. The
MIT Press, 1993.

[45] J. Meseguer. Solving the inheritance anomaly in concurrent object-oriented
programming. In O. M. Nierstrasz, editor, ECOOP’98 — Object-Oriented
Programming, 7th European Conference, Kaiserslautern, Germany, July 26—
30, 1993, Proceedings, volume 707 of Lecture Notes in Computer Science, pages
220-246. Springer-Verlag, 1993.

[46] J. Meseguer, editor. Proceedings First International Workshop on Rewriting
Logic and its Applications, WRLA’96, Asilomar, California, September 3-6,
1996, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
Sept. 1996. http://www.elsevier.nl/locate/entcs/volume4.html.

[47] J. Meseguer. Rewriting logic as a semantic framework for concurrency: A
progress report. In U. Montanari and V. Sassone, editors, CONCUR’96:
Concurrency Theory, Tth International Conference, Pisa, Italy, August 26—29,
1996, Proceedings, volume 1119 of Lecture Notes in Computer Science, pages
331-372. Springer-Verlag, 1996.

63

[48] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, Recent Trends in Algebraic
Development Techniques, 12th International Workshop, WADT’ 97, Tarquinia,
Italy, June 3-7, 1997, Selected Papers, volume 1376 of Lecture Notes in
Computer Science, pages 18-61. Springer-Verlag, 1998.

[49] J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, Proceedings of the NATO
Advanced Study Institute on Computational Logic held in Marktoberdorf,
Germany, July 29 — August 6, 1997, volume 165 of NATO ASI Series F:
Computer and Systems Sciences, pages 347-398. Springer-Verlag, 1998.

[50] J. Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework
for object-based distributed systems. In S. F. Smith and C. L. Talcott,
editors, Proceedings IFIP Conference on Formal Methods for Open Object-
Based Distributed Systems IV, FMOODS 2000, September 6-8, 2000, Stanford,
California, USA, pages 89-117. Kluwer Academic Publishers, 2000.

[51] J. Meseguer. Rewriting logic and Maude: Concepts and applications. In
L. Bachmair, editor, Rewriting Techniques and Applications, 11th International
Conference, RTA 2000, Norwich, UK, July 10-12, 2000, Proceedings, volume

1833 of Lecture Notes in Computer Science, pages 1-26. Springer-Verlag, 2000.

[52] J. Meseguer and J. A. Goguen. Order-sorted algebra solves the constructor-
selector, multiple representation and coercion problems. Information and
Computation, 104(1):114-158, 1993.

[53] J. Meseguer and C. L. Talcott. A partial order event model for concurrent
objects. In J. C. M. Baeten and S. Mauw, editors, CONCUR’99, Concurrency
Theory, 10th International Conference Findhoven, The Netherlands, August
24-27, 1999, Proceedings, volume 1664 of Lecture Notes in Computer Science,
pages 415-430. Springer-Verlag, 1999.

[54] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[55] T. Nipkow. Combining matching algorithms: The regular case. Journal of
Symbolic Computation, 12:633-653, 1991.

[56] P. C. Olveczky. Specification and Analysis of Real-Time and Hybrid Systems
in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000. http:
//maude.csl.sri.com/papers.

[57] P. C. Olveczky and J. Meseguer. Real-Time Maude: A tool for simulating
and analyzing real-time and hybrid systems. In Futatsugi [34], pages 361-383.
http://www.elsevier.nl/locate/entcs/volume36.html.

[58] P. C. Olveczky and J. Meseguer. Specification of real-time and hybrid systems
in rewriting logic. Theoretical Computer Science, 2001. This volume. http:
//maude.csl.sri.com/papers.

[59] J. F. Quesada. The SCP parsing algorithm based on syntactic constraints
propagation. PhD thesis, Universidad de Sevilla, Spain, June 1997.

64

[60] J. F. Quesada. The Maude parser: Parsing and meta-parsing (-extended
context-free grammars. Technical report, Computer Science Laboratory, SRI
International, 2001. To appear.

[61] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In J. Hsiang, editor,
Rewriting Techniques and Applications, 6th International Conference, RTA’95,
Kuaiserslautern, Germany, April 5-7, 1995, Proceedings, volume 914 of Lecture
Notes in Computer Science, pages 179-193. Springer-Verlag, 1995.

[62] C. L. Talcott. An actor rewriting theory. In Meseguer [46], pages 360-383.
http://www.elsevier.nl/locate/entcs/volume4.html.

[63] C. L. Talcott. Interaction semantics for components of distributed systems.
In E. Najm and J.-B. Stefani, editors, Proceedings IFIP Conference on Formal
Methods for Open Object-Based Distributed Systems, FMOODS’96, pages 154—
169. Chapman & Hall, 1997.

[64] C. L. Talcott. Towards a toolkit for actor system specification. In T. Rus, editor,
Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Towa, USA, May 20-27, 2000, Proceedings, volume
1816 of Lecture Notes in Computer Science, pages 391-406. Springer-Verlag,
2000.

[65] C. L. Talcott. Actor theories in rewriting logic. Theoretical Computer Science,
2001. This volume.

[66] A. Verdejo and N. Marti-Oliet. Executing and verifying CCS in
Maude. Technical Report 99-00, Departamento de Sistemas Informéticos y
Programacién, Universidad Complutense de Madrid, Feb. 2000. http://maude.
csl.sri.com/casestudies/ccs.

[67] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis,
D. Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE’9} Parallel
Architectures and Languages FEurope, 6th International PARLE Conference,
Athens, Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes in
Computer Science, pages 648—660. Springer-Verlag, 1994.

[68] P. Viry. Rewriting modulo a rewrite system. Technical Report TR-95-20,
Dipartimento di Informatica, Universita di Pisa, Dec. 1995. ftp://ftp.di.
unipi.it/pub/techreports/TR-95-20.ps.Z.

65

